Metamath Proof Explorer


Theorem mdslmd1lem1

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
mdslmd1lem.5 R C
Assertion mdslmd1lem1 A 𝑀 B B 𝑀 * A A C A D C A B D A B R A D R A C D R A C D C B D B R R D B R C B D B R C B D B

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 mdslmd1lem.5 R C
6 4 2 chincli D B C
7 5 6 1 chlej1i R D B R A D B A
8 simpr A 𝑀 B B 𝑀 * A B 𝑀 * A
9 simpr A C A D A D
10 simpr C A B D A B D A B
11 1 2 4 3pm3.2i A C B C D C
12 dmdsl3 A C B C D C B 𝑀 * A A D D A B D B A = D
13 11 12 mpan B 𝑀 * A A D D A B D B A = D
14 8 9 10 13 syl3an A 𝑀 B B 𝑀 * A A C A D C A B D A B D B A = D
15 14 3expb A 𝑀 B B 𝑀 * A A C A D C A B D A B D B A = D
16 15 sseq2d A 𝑀 B B 𝑀 * A A C A D C A B D A B R A D B A R A D
17 7 16 syl5ib A 𝑀 B B 𝑀 * A A C A D C A B D A B R D B R A D
18 17 adantld A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A D
19 18 imim1d A 𝑀 B B 𝑀 * A A C A D C A B D A B R A D R A C D R A C D C B D B R R D B R A C D R A C D
20 simpll A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A 𝑀 B B 𝑀 * A
21 simpll A C A D C A B D A B A C
22 21 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A C
23 1 5 chub2i A R A
24 22 23 jctil A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A A C
25 ssin A R A A C A R A C
26 24 25 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C
27 inss1 D B D
28 sstr R D B D B D R D
29 27 28 mpan2 R D B R D
30 sstr R D D A B R A B
31 29 30 sylan R D B D A B R A B
32 31 ancoms D A B R D B R A B
33 32 adantll C A B D A B R D B R A B
34 33 adantll A C A D C A B D A B R D B R A B
35 34 ad2ant2l A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A B
36 1 2 chub1i A A B
37 35 36 jctir A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A B A A B
38 1 2 chjcli A B C
39 5 1 38 chlubi R A B A A B R A A B
40 37 39 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A A B
41 simprrl A 𝑀 B B 𝑀 * A A C A D C A B D A B C A B
42 41 adantr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B C A B
43 40 42 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A A B C A B
44 5 1 chjcli R A C
45 44 3 38 chlubi R A A B C A B R A C A B
46 43 45 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C A B
47 1 2 44 3 mdslj1i A 𝑀 B B 𝑀 * A A R A C R A C A B R A C B = R A B C B
48 20 26 46 47 syl12anc A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C B = R A B C B
49 simplll A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A 𝑀 B
50 simplrl A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A C A D
51 ssin A C A D A C D
52 50 51 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A C D
53 52 ssrind A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A B C D B
54 inindir C D B = C B D B
55 53 54 sseqtrdi A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A B C B D B
56 simprl A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B C B D B R
57 55 56 sstrd A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A B R
58 inss2 D B B
59 sstr R D B D B B R B
60 58 59 mpan2 R D B R B
61 60 ad2antll A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R B
62 1 2 5 3pm3.2i A C B C R C
63 mdsl3 A C B C R C A 𝑀 B A B R R B R A B = R
64 62 63 mpan A 𝑀 B A B R R B R A B = R
65 49 57 61 64 syl3anc A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A B = R
66 65 oveq1d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A B C B = R C B
67 48 66 eqtr2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B = R A C B
68 67 ineq1d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B D B = R A C B D B
69 inindir R A C D B = R A C B D B
70 68 69 eqtr4di A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B D B = R A C D B
71 52 23 jctil A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A A C D
72 ssin A R A A C D A R A C D
73 71 72 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C D
74 ssinss1 C A B C D A B
75 74 ad2antrl A C A D C A B D A B C D A B
76 75 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B C D A B
77 40 76 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A A B C D A B
78 3 4 chincli C D C
79 44 78 38 chlubi R A A B C D A B R A C D A B
80 77 79 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D A B
81 1 2 44 78 mdslj1i A 𝑀 B B 𝑀 * A A R A C D R A C D A B R A C D B = R A B C D B
82 20 73 80 81 syl12anc A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D B = R A B C D B
83 54 a1i A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B C D B = C B D B
84 65 83 oveq12d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A B C D B = R C B D B
85 82 84 eqtr2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B D B = R A C D B
86 70 85 sseq12d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B D B R C B D B R A C D B R A C D B
87 simpllr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B B 𝑀 * A
88 simplr A C A D C A B D A B A D
89 88 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A D
90 44 3 chub1i R A R A C
91 23 90 sstri A R A C
92 89 91 jctil A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C A D
93 ssin A R A C A D A R A C D
94 92 93 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C D
95 44 78 chub1i R A R A C D
96 23 95 sstri A R A C D
97 94 96 jctir A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C D A R A C D
98 ssin A R A C D A R A C D A R A C D R A C D
99 97 98 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B A R A C D R A C D
100 inss2 R A C D D
101 sstr R A C D D D A B R A C D A B
102 100 101 mpan D A B R A C D A B
103 102 ad2antll A C A D C A B D A B R A C D A B
104 103 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D A B
105 104 80 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D A B R A C D A B
106 44 3 chjcli R A C C
107 106 4 chincli R A C D C
108 44 78 chjcli R A C D C
109 107 108 38 chlubi R A C D A B R A C D A B R A C D R A C D A B
110 105 109 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D R A C D A B
111 1 2 107 108 mdslle1i B 𝑀 * A A R A C D R A C D R A C D R A C D A B R A C D R A C D R A C D B R A C D B
112 87 99 110 111 syl3anc A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D R A C D R A C D B R A C D B
113 86 112 bitr4d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R C B D B R C B D B R A C D R A C D
114 113 exbiri A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D R A C D R C B D B R C B D B
115 114 a2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C B D B R R D B R A C D R A C D C B D B R R D B R C B D B R C B D B
116 19 115 syld A 𝑀 B B 𝑀 * A A C A D C A B D A B R A D R A C D R A C D C B D B R R D B R C B D B R C B D B