Metamath Proof Explorer


Theorem mdslmd1lem2

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
mdslmd1lem.5 R C
Assertion mdslmd1lem2 A 𝑀 B B 𝑀 * A A C A D C A B D A B R B D B R B C B D B R B C B D B C D R R D R C D R C D

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 mdslmd1lem.5 R C
6 ssrin R D R B D B
7 6 adantl C D R R D R B D B
8 7 imim1i R B D B R B C B D B R B C B D B C D R R D R B C B D B R B C B D B
9 simpllr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D B 𝑀 * A
10 3 5 chub2i C R C
11 sstr A C C R C A R C
12 10 11 mpan2 A C A R C
13 12 ad2antrr A C A D C A B D A B A R C
14 13 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D A R C
15 simplr A C A D C A B D A B A D
16 15 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D A D
17 14 16 ssind A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D A R C D
18 ssin A C A D A C D
19 3 4 chincli C D C
20 19 5 chub2i C D R C D
21 sstr A C D C D R C D A R C D
22 20 21 mpan2 A C D A R C D
23 18 22 sylbi A C A D A R C D
24 23 adantr A C A D C A B D A B A R C D
25 24 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D A R C D
26 17 25 ssind A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D A R C D R C D
27 inss2 R C D D
28 sstr R C D D D A B R C D A B
29 27 28 mpan D A B R C D A B
30 29 ad2antll A C A D C A B D A B R C D A B
31 30 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D A B
32 sstr R D D A B R A B
33 32 ancoms D A B R D R A B
34 33 ad2ant2l C A B D A B C D R R D R A B
35 34 adantll A C A D C A B D A B C D R R D R A B
36 35 adantll A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R A B
37 ssinss1 C A B C D A B
38 37 ad2antrl A C A D C A B D A B C D A B
39 38 ad2antlr A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D C D A B
40 36 39 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R A B C D A B
41 1 2 chjcli A B C
42 5 19 41 chlubi R A B C D A B R C D A B
43 40 42 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D A B
44 31 43 jca A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D A B R C D A B
45 5 3 chjcli R C C
46 45 4 chincli R C D C
47 5 19 chjcli R C D C
48 46 47 41 chlubi R C D A B R C D A B R C D R C D A B
49 44 48 sylib A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D R C D A B
50 1 2 46 47 mdslle1i B 𝑀 * A A R C D R C D R C D R C D A B R C D R C D R C D B R C D B
51 9 26 49 50 syl3anc A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D R C D R C D B R C D B
52 inindir R C D B = R C B D B
53 sstr A C D C D R A R
54 18 53 sylanb A C A D C D R A R
55 54 ad2ant2r A C A D C A B D A B C D R R D A R
56 simplll A C A D C A B D A B C D R R D A C
57 55 56 ssind A C A D C A B D A B C D R R D A R C
58 simplrl A C A D C A B D A B C D R R D C A B
59 35 58 jca A C A D C A B D A B C D R R D R A B C A B
60 5 3 41 chlubi R A B C A B R C A B
61 59 60 sylib A C A D C A B D A B C D R R D R C A B
62 57 61 jca A C A D C A B D A B C D R R D A R C R C A B
63 1 2 5 3 mdslj1i A 𝑀 B B 𝑀 * A A R C R C A B R C B = R B C B
64 62 63 sylan2 A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C B = R B C B
65 64 anassrs A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C B = R B C B
66 65 ineq1d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C B D B = R B C B D B
67 52 66 eqtr2id A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C B D B = R C D B
68 18 biimpi A C A D A C D
69 68 adantr A C A D C D R A C D
70 54 69 ssind A C A D C D R A R C D
71 33 adantll C A B D A B R D R A B
72 37 ad2antrr C A B D A B R D C D A B
73 71 72 jca C A B D A B R D R A B C D A B
74 73 42 sylib C A B D A B R D R C D A B
75 70 74 anim12i A C A D C D R C A B D A B R D A R C D R C D A B
76 75 an4s A C A D C A B D A B C D R R D A R C D R C D A B
77 1 2 5 19 mdslj1i A 𝑀 B B 𝑀 * A A R C D R C D A B R C D B = R B C D B
78 76 77 sylan2 A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D B = R B C D B
79 78 anassrs A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D B = R B C D B
80 inindir C D B = C B D B
81 80 a1i A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D C D B = C B D B
82 81 oveq2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C D B = R B C B D B
83 79 82 eqtr2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C B D B = R C D B
84 67 83 sseq12d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C B D B R B C B D B R C D B R C D B
85 51 84 bitr4d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R C D R C D R B C B D B R B C B D B
86 85 exbiri A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C B D B R B C B D B R C D R C D
87 86 a2d A 𝑀 B B 𝑀 * A A C A D C A B D A B C D R R D R B C B D B R B C B D B C D R R D R C D R C D
88 8 87 syl5 A 𝑀 B B 𝑀 * A A C A D C A B D A B R B D B R B C B D B R B C B D B C D R R D R C D R C D