Metamath Proof Explorer


Theorem mdslmd1lem3

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
Assertion mdslmd1lem3 x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x A D x A C D x A C D C B D B x x D B x C B D B x C B D B

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 oveq1 x = if x C x 0 x A = if x C x 0 A
6 5 sseq1d x = if x C x 0 x A D if x C x 0 A D
7 5 oveq1d x = if x C x 0 x A C = if x C x 0 A C
8 7 ineq1d x = if x C x 0 x A C D = if x C x 0 A C D
9 5 oveq1d x = if x C x 0 x A C D = if x C x 0 A C D
10 8 9 sseq12d x = if x C x 0 x A C D x A C D if x C x 0 A C D if x C x 0 A C D
11 6 10 imbi12d x = if x C x 0 x A D x A C D x A C D if x C x 0 A D if x C x 0 A C D if x C x 0 A C D
12 sseq2 x = if x C x 0 C B D B x C B D B if x C x 0
13 sseq1 x = if x C x 0 x D B if x C x 0 D B
14 12 13 anbi12d x = if x C x 0 C B D B x x D B C B D B if x C x 0 if x C x 0 D B
15 oveq1 x = if x C x 0 x C B = if x C x 0 C B
16 15 ineq1d x = if x C x 0 x C B D B = if x C x 0 C B D B
17 oveq1 x = if x C x 0 x C B D B = if x C x 0 C B D B
18 16 17 sseq12d x = if x C x 0 x C B D B x C B D B if x C x 0 C B D B if x C x 0 C B D B
19 14 18 imbi12d x = if x C x 0 C B D B x x D B x C B D B x C B D B C B D B if x C x 0 if x C x 0 D B if x C x 0 C B D B if x C x 0 C B D B
20 11 19 imbi12d x = if x C x 0 x A D x A C D x A C D C B D B x x D B x C B D B x C B D B if x C x 0 A D if x C x 0 A C D if x C x 0 A C D C B D B if x C x 0 if x C x 0 D B if x C x 0 C B D B if x C x 0 C B D B
21 20 imbi2d x = if x C x 0 A 𝑀 B B 𝑀 * A A C A D C A B D A B x A D x A C D x A C D C B D B x x D B x C B D B x C B D B A 𝑀 B B 𝑀 * A A C A D C A B D A B if x C x 0 A D if x C x 0 A C D if x C x 0 A C D C B D B if x C x 0 if x C x 0 D B if x C x 0 C B D B if x C x 0 C B D B
22 h0elch 0 C
23 22 elimel if x C x 0 C
24 1 2 3 4 23 mdslmd1lem1 A 𝑀 B B 𝑀 * A A C A D C A B D A B if x C x 0 A D if x C x 0 A C D if x C x 0 A C D C B D B if x C x 0 if x C x 0 D B if x C x 0 C B D B if x C x 0 C B D B
25 21 24 dedth x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x A D x A C D x A C D C B D B x x D B x C B D B x C B D B
26 25 imp x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x A D x A C D x A C D C B D B x x D B x C B D B x C B D B