Metamath Proof Explorer


Theorem mdslmd1lem4

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
Assertion mdslmd1lem4 x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x B D B x B C B D B x B C B D B C D x x D x C D x C D

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 ineq1 x = if x C x 0 x B = if x C x 0 B
6 5 sseq1d x = if x C x 0 x B D B if x C x 0 B D B
7 5 oveq1d x = if x C x 0 x B C B = if x C x 0 B C B
8 7 ineq1d x = if x C x 0 x B C B D B = if x C x 0 B C B D B
9 5 oveq1d x = if x C x 0 x B C B D B = if x C x 0 B C B D B
10 8 9 sseq12d x = if x C x 0 x B C B D B x B C B D B if x C x 0 B C B D B if x C x 0 B C B D B
11 6 10 imbi12d x = if x C x 0 x B D B x B C B D B x B C B D B if x C x 0 B D B if x C x 0 B C B D B if x C x 0 B C B D B
12 sseq2 x = if x C x 0 C D x C D if x C x 0
13 sseq1 x = if x C x 0 x D if x C x 0 D
14 12 13 anbi12d x = if x C x 0 C D x x D C D if x C x 0 if x C x 0 D
15 oveq1 x = if x C x 0 x C = if x C x 0 C
16 15 ineq1d x = if x C x 0 x C D = if x C x 0 C D
17 oveq1 x = if x C x 0 x C D = if x C x 0 C D
18 16 17 sseq12d x = if x C x 0 x C D x C D if x C x 0 C D if x C x 0 C D
19 14 18 imbi12d x = if x C x 0 C D x x D x C D x C D C D if x C x 0 if x C x 0 D if x C x 0 C D if x C x 0 C D
20 11 19 imbi12d x = if x C x 0 x B D B x B C B D B x B C B D B C D x x D x C D x C D if x C x 0 B D B if x C x 0 B C B D B if x C x 0 B C B D B C D if x C x 0 if x C x 0 D if x C x 0 C D if x C x 0 C D
21 20 imbi2d x = if x C x 0 A 𝑀 B B 𝑀 * A A C A D C A B D A B x B D B x B C B D B x B C B D B C D x x D x C D x C D A 𝑀 B B 𝑀 * A A C A D C A B D A B if x C x 0 B D B if x C x 0 B C B D B if x C x 0 B C B D B C D if x C x 0 if x C x 0 D if x C x 0 C D if x C x 0 C D
22 h0elch 0 C
23 22 elimel if x C x 0 C
24 1 2 3 4 23 mdslmd1lem2 A 𝑀 B B 𝑀 * A A C A D C A B D A B if x C x 0 B D B if x C x 0 B C B D B if x C x 0 B C B D B C D if x C x 0 if x C x 0 D if x C x 0 C D if x C x 0 C D
25 21 24 dedth x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x B D B x B C B D B x B C B D B C D x x D x C D x C D
26 25 imp x C A 𝑀 B B 𝑀 * A A C A D C A B D A B x B D B x B C B D B x B C B D B C D x x D x C D x C D