Metamath Proof Explorer


Theorem mdslmd2i

Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2 (join version). (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
Assertion mdslmd2i A 𝑀 B B 𝑀 * A A B C D C D B C 𝑀 D C A 𝑀 D A

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 3 4 chjcli C D C
6 5 2 1 chlej1i C D B C D A B A
7 3 4 1 chjjdiri C D A = C A D A
8 2 1 chjcomi B A = A B
9 6 7 8 3sstr3g C D B C A D A A B
10 9 adantl A B C D C D B C A D A A B
11 1 3 chub2i A C A
12 1 4 chub2i A D A
13 11 12 ssini A C A D A
14 10 13 jctil A B C D C D B A C A D A C A D A A B
15 3 1 chjcli C A C
16 4 1 chjcli D A C
17 1 2 15 16 mdslmd1i A 𝑀 B B 𝑀 * A A C A D A C A D A A B C A 𝑀 D A C A B 𝑀 D A B
18 14 17 sylan2 A 𝑀 B B 𝑀 * A A B C D C D B C A 𝑀 D A C A B 𝑀 D A B
19 id A 𝑀 B A 𝑀 B
20 inss1 C D C
21 sstr A B C D C D C A B C
22 20 21 mpan2 A B C D A B C
23 3 4 chub1i C C D
24 sstr C C D C D B C B
25 23 24 mpan C D B C B
26 1 2 3 3pm3.2i A C B C C C
27 mdsl3 A C B C C C A 𝑀 B A B C C B C A B = C
28 26 27 mpan A 𝑀 B A B C C B C A B = C
29 19 22 25 28 syl3an A 𝑀 B A B C D C D B C A B = C
30 inss2 C D D
31 sstr A B C D C D D A B D
32 30 31 mpan2 A B C D A B D
33 4 3 chub2i D C D
34 sstr D C D C D B D B
35 33 34 mpan C D B D B
36 1 2 4 3pm3.2i A C B C D C
37 mdsl3 A C B C D C A 𝑀 B A B D D B D A B = D
38 36 37 mpan A 𝑀 B A B D D B D A B = D
39 19 32 35 38 syl3an A 𝑀 B A B C D C D B D A B = D
40 29 39 breq12d A 𝑀 B A B C D C D B C A B 𝑀 D A B C 𝑀 D
41 40 3expb A 𝑀 B A B C D C D B C A B 𝑀 D A B C 𝑀 D
42 41 adantlr A 𝑀 B B 𝑀 * A A B C D C D B C A B 𝑀 D A B C 𝑀 D
43 18 42 bitr2d A 𝑀 B B 𝑀 * A A B C D C D B C 𝑀 D C A 𝑀 D A