Metamath Proof Explorer


Theorem mdslmd4i

Description: Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of MaedaMaeda p. 2. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 A C
mdslmd.2 B C
mdslmd.3 C C
mdslmd.4 D C
Assertion mdslmd4i A 𝑀 B A B C C A A B D D B C 𝑀 D

Proof

Step Hyp Ref Expression
1 mdslmd.1 A C
2 mdslmd.2 B C
3 mdslmd.3 C C
4 mdslmd.4 D C
5 simp1 A 𝑀 B A B C C A A B D D B A 𝑀 B
6 1 2 chincli A B C
7 ssmd1 A B C D C A B D A B 𝑀 D
8 6 4 7 mp3an12 A B D A B 𝑀 D
9 8 adantr A B D D B A B 𝑀 D
10 9 3ad2ant3 A 𝑀 B A B C C A A B D D B A B 𝑀 D
11 sslin D B A D A B
12 sstr A D A B A B C A D C
13 11 12 sylan D B A B C A D C
14 13 ancoms A B C D B A D C
15 14 ad2ant2rl A B C C A A B D D B A D C
16 15 3adant1 A 𝑀 B A B C C A A B D D B A D C
17 simp2r A 𝑀 B A B C C A A B D D B C A
18 1 2 4 3 mdslmd3i A 𝑀 B A B 𝑀 D A D C C A C 𝑀 B D
19 5 10 16 17 18 syl22anc A 𝑀 B A B C C A A B D D B C 𝑀 B D
20 sseqin2 D B B D = D
21 20 biimpi D B B D = D
22 21 adantl A B D D B B D = D
23 22 3ad2ant3 A 𝑀 B A B C C A A B D D B B D = D
24 19 23 breqtrd A 𝑀 B A B C C A A B D D B C 𝑀 D