Metamath Proof Explorer


Theorem meetat

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)

Ref Expression
Hypotheses m.b B = Base K
m.m ˙ = meet K
m.z 0 ˙ = 0. K
m.a A = Atoms K
Assertion meetat K OL X B P A X ˙ P = P X ˙ P = 0 ˙

Proof

Step Hyp Ref Expression
1 m.b B = Base K
2 m.m ˙ = meet K
3 m.z 0 ˙ = 0. K
4 m.a A = Atoms K
5 ollat K OL K Lat
6 5 3ad2ant1 K OL X B P A K Lat
7 simp2 K OL X B P A X B
8 simp3 K OL X B P A P A
9 1 4 atbase P A P B
10 8 9 syl K OL X B P A P B
11 eqid K = K
12 1 11 2 latmle2 K Lat X B P B X ˙ P K P
13 6 7 10 12 syl3anc K OL X B P A X ˙ P K P
14 olop K OL K OP
15 14 3ad2ant1 K OL X B P A K OP
16 1 2 latmcl K Lat X B P B X ˙ P B
17 6 7 10 16 syl3anc K OL X B P A X ˙ P B
18 1 11 3 4 leatb K OP X ˙ P B P A X ˙ P K P X ˙ P = P X ˙ P = 0 ˙
19 15 17 8 18 syl3anc K OL X B P A X ˙ P K P X ˙ P = P X ˙ P = 0 ˙
20 13 19 mpbid K OL X B P A X ˙ P = P X ˙ P = 0 ˙