Metamath Proof Explorer


Theorem meetat2

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012)

Ref Expression
Hypotheses m.b B = Base K
m.m ˙ = meet K
m.z 0 ˙ = 0. K
m.a A = Atoms K
Assertion meetat2 K OL X B P A X ˙ P A X ˙ P = 0 ˙

Proof

Step Hyp Ref Expression
1 m.b B = Base K
2 m.m ˙ = meet K
3 m.z 0 ˙ = 0. K
4 m.a A = Atoms K
5 1 2 3 4 meetat K OL X B P A X ˙ P = P X ˙ P = 0 ˙
6 eleq1a P A X ˙ P = P X ˙ P A
7 6 3ad2ant3 K OL X B P A X ˙ P = P X ˙ P A
8 7 orim1d K OL X B P A X ˙ P = P X ˙ P = 0 ˙ X ˙ P A X ˙ P = 0 ˙
9 5 8 mpd K OL X B P A X ˙ P A X ˙ P = 0 ˙