Database
BASIC ORDER THEORY
Partially ordered sets (posets)
meetdef
Next ⟩
meetval
Metamath Proof Explorer
Ascii
Unicode
Theorem
meetdef
Description:
Two ways to say that a meet is defined.
(Contributed by
NM
, 9-Sep-2018)
Ref
Expression
Hypotheses
meetdef.u
⊢
G
=
glb
⁡
K
meetdef.m
⊢
∧
˙
=
meet
⁡
K
meetdef.k
⊢
φ
→
K
∈
V
meetdef.x
⊢
φ
→
X
∈
W
meetdef.y
⊢
φ
→
Y
∈
Z
Assertion
meetdef
⊢
φ
→
X
Y
∈
dom
⁡
∧
˙
↔
X
Y
∈
dom
⁡
G
Proof
Step
Hyp
Ref
Expression
1
meetdef.u
⊢
G
=
glb
⁡
K
2
meetdef.m
⊢
∧
˙
=
meet
⁡
K
3
meetdef.k
⊢
φ
→
K
∈
V
4
meetdef.x
⊢
φ
→
X
∈
W
5
meetdef.y
⊢
φ
→
Y
∈
Z
6
1
2
meetdm
⊢
K
∈
V
→
dom
⁡
∧
˙
=
x
y
|
x
y
∈
dom
⁡
G
7
6
eleq2d
⊢
K
∈
V
→
X
Y
∈
dom
⁡
∧
˙
↔
X
Y
∈
x
y
|
x
y
∈
dom
⁡
G
8
3
7
syl
⊢
φ
→
X
Y
∈
dom
⁡
∧
˙
↔
X
Y
∈
x
y
|
x
y
∈
dom
⁡
G
9
preq1
⊢
x
=
X
→
x
y
=
X
y
10
9
eleq1d
⊢
x
=
X
→
x
y
∈
dom
⁡
G
↔
X
y
∈
dom
⁡
G
11
preq2
⊢
y
=
Y
→
X
y
=
X
Y
12
11
eleq1d
⊢
y
=
Y
→
X
y
∈
dom
⁡
G
↔
X
Y
∈
dom
⁡
G
13
10
12
opelopabg
⊢
X
∈
W
∧
Y
∈
Z
→
X
Y
∈
x
y
|
x
y
∈
dom
⁡
G
↔
X
Y
∈
dom
⁡
G
14
4
5
13
syl2anc
⊢
φ
→
X
Y
∈
x
y
|
x
y
∈
dom
⁡
G
↔
X
Y
∈
dom
⁡
G
15
8
14
bitrd
⊢
φ
→
X
Y
∈
dom
⁡
∧
˙
↔
X
Y
∈
dom
⁡
G