Metamath Proof Explorer


Theorem meetfval2

Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses meetfval.u G=glbK
meetfval.m ˙=meetK
Assertion meetfval2 KV˙=xyz|xydomGz=Gxy

Proof

Step Hyp Ref Expression
1 meetfval.u G=glbK
2 meetfval.m ˙=meetK
3 1 2 meetfval KV˙=xyz|xyGz
4 1 glbfun FunG
5 funbrfv2b FunGxyGzxydomGGxy=z
6 4 5 ax-mp xyGzxydomGGxy=z
7 eqcom Gxy=zz=Gxy
8 7 anbi2i xydomGGxy=zxydomGz=Gxy
9 6 8 bitri xyGzxydomGz=Gxy
10 9 oprabbii xyz|xyGz=xyz|xydomGz=Gxy
11 3 10 eqtrdi KV˙=xyz|xydomGz=Gxy