Metamath Proof Explorer


Theorem meetfval2

Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses meetfval.u G = glb K
meetfval.m ˙ = meet K
Assertion meetfval2 K V ˙ = x y z | x y dom G z = G x y

Proof

Step Hyp Ref Expression
1 meetfval.u G = glb K
2 meetfval.m ˙ = meet K
3 1 2 meetfval K V ˙ = x y z | x y G z
4 1 glbfun Fun G
5 funbrfv2b Fun G x y G z x y dom G G x y = z
6 4 5 ax-mp x y G z x y dom G G x y = z
7 eqcom G x y = z z = G x y
8 7 anbi2i x y dom G G x y = z x y dom G z = G x y
9 6 8 bitri x y G z x y dom G z = G x y
10 9 oprabbii x y z | x y G z = x y z | x y dom G z = G x y
11 3 10 eqtrdi K V ˙ = x y z | x y dom G z = G x y