Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
|
2 |
|
mendassa.s |
|
3 |
1
|
mendbas |
|
4 |
3
|
a1i |
|
5 |
1 2
|
mendsca |
|
6 |
5
|
a1i |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
1 2
|
mendlmod |
|
11 |
1
|
mendring |
|
12 |
11
|
adantr |
|
13 |
|
simpr3 |
|
14 |
|
eqid |
|
15 |
14 14
|
lmhmf |
|
16 |
13 15
|
syl |
|
17 |
16
|
ffvelcdmda |
|
18 |
16
|
feqmptd |
|
19 |
|
simpr1 |
|
20 |
|
simpr2 |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
1 21 3 2 22 14 23
|
mendvsca |
|
25 |
19 20 24
|
syl2anc |
|
26 |
|
fvexd |
|
27 |
|
simplr1 |
|
28 |
|
fvexd |
|
29 |
|
fconstmpt |
|
30 |
29
|
a1i |
|
31 |
14 14
|
lmhmf |
|
32 |
20 31
|
syl |
|
33 |
32
|
feqmptd |
|
34 |
26 27 28 30 33
|
offval2 |
|
35 |
25 34
|
eqtrd |
|
36 |
|
fveq2 |
|
37 |
36
|
oveq2d |
|
38 |
17 18 35 37
|
fmptco |
|
39 |
|
simplr1 |
|
40 |
|
fvexd |
|
41 |
|
fconstmpt |
|
42 |
41
|
a1i |
|
43 |
|
eqid |
|
44 |
1 3 43
|
mendmulr |
|
45 |
20 13 44
|
syl2anc |
|
46 |
|
fcompt |
|
47 |
32 16 46
|
syl2anc |
|
48 |
45 47
|
eqtrd |
|
49 |
26 39 40 42 48
|
offval2 |
|
50 |
38 49
|
eqtr4d |
|
51 |
10
|
adantr |
|
52 |
3 5 23 22
|
lmodvscl |
|
53 |
51 19 20 52
|
syl3anc |
|
54 |
1 3 43
|
mendmulr |
|
55 |
53 13 54
|
syl2anc |
|
56 |
12
|
adantr |
|
57 |
3 43
|
ringcl |
|
58 |
56 20 13 57
|
syl3anc |
|
59 |
1 21 3 2 22 14 23
|
mendvsca |
|
60 |
19 58 59
|
syl2anc |
|
61 |
50 55 60
|
3eqtr4d |
|
62 |
|
simplr2 |
|
63 |
2 22 14 21 21
|
lmhmlin |
|
64 |
62 39 17 63
|
syl3anc |
|
65 |
64
|
mpteq2dva |
|
66 |
|
simplll |
|
67 |
14 2 21 22
|
lmodvscl |
|
68 |
66 39 17 67
|
syl3anc |
|
69 |
1 21 3 2 22 14 23
|
mendvsca |
|
70 |
19 13 69
|
syl2anc |
|
71 |
|
fvexd |
|
72 |
26 39 71 42 18
|
offval2 |
|
73 |
70 72
|
eqtrd |
|
74 |
|
fveq2 |
|
75 |
68 73 33 74
|
fmptco |
|
76 |
65 75 49
|
3eqtr4d |
|
77 |
3 5 23 22
|
lmodvscl |
|
78 |
51 19 13 77
|
syl3anc |
|
79 |
1 3 43
|
mendmulr |
|
80 |
20 78 79
|
syl2anc |
|
81 |
76 80 60
|
3eqtr4d |
|
82 |
4 6 7 8 9 10 12 61 81
|
isassad |
|