Metamath Proof Explorer


Theorem mendassa

Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses mendassa.a A = MEndo M
mendassa.s S = Scalar M
Assertion mendassa M LMod S CRing A AssAlg

Proof

Step Hyp Ref Expression
1 mendassa.a A = MEndo M
2 mendassa.s S = Scalar M
3 1 mendbas M LMHom M = Base A
4 3 a1i M LMod S CRing M LMHom M = Base A
5 1 2 mendsca S = Scalar A
6 5 a1i M LMod S CRing S = Scalar A
7 eqidd M LMod S CRing Base S = Base S
8 eqidd M LMod S CRing A = A
9 eqidd M LMod S CRing A = A
10 1 2 mendlmod M LMod S CRing A LMod
11 1 mendring M LMod A Ring
12 11 adantr M LMod S CRing A Ring
13 simpr3 M LMod S CRing x Base S y M LMHom M z M LMHom M z M LMHom M
14 eqid Base M = Base M
15 14 14 lmhmf z M LMHom M z : Base M Base M
16 13 15 syl M LMod S CRing x Base S y M LMHom M z M LMHom M z : Base M Base M
17 16 ffvelcdmda M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M z v Base M
18 16 feqmptd M LMod S CRing x Base S y M LMHom M z M LMHom M z = v Base M z v
19 simpr1 M LMod S CRing x Base S y M LMHom M z M LMHom M x Base S
20 simpr2 M LMod S CRing x Base S y M LMHom M z M LMHom M y M LMHom M
21 eqid M = M
22 eqid Base S = Base S
23 eqid A = A
24 1 21 3 2 22 14 23 mendvsca x Base S y M LMHom M x A y = Base M × x M f y
25 19 20 24 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y = Base M × x M f y
26 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M Base M V
27 simplr1 M LMod S CRing x Base S y M LMHom M z M LMHom M w Base M x Base S
28 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M w Base M y w V
29 fconstmpt Base M × x = w Base M x
30 29 a1i M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x = w Base M x
31 14 14 lmhmf y M LMHom M y : Base M Base M
32 20 31 syl M LMod S CRing x Base S y M LMHom M z M LMHom M y : Base M Base M
33 32 feqmptd M LMod S CRing x Base S y M LMHom M z M LMHom M y = w Base M y w
34 26 27 28 30 33 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y = w Base M x M y w
35 25 34 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M x A y = w Base M x M y w
36 fveq2 w = z v y w = y z v
37 36 oveq2d w = z v x M y w = x M y z v
38 17 18 35 37 fmptco M LMod S CRing x Base S y M LMHom M z M LMHom M x A y z = v Base M x M y z v
39 simplr1 M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M x Base S
40 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y z v V
41 fconstmpt Base M × x = v Base M x
42 41 a1i M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x = v Base M x
43 eqid A = A
44 1 3 43 mendmulr y M LMHom M z M LMHom M y A z = y z
45 20 13 44 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A z = y z
46 fcompt y : Base M Base M z : Base M Base M y z = v Base M y z v
47 32 16 46 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y z = v Base M y z v
48 45 47 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M y A z = v Base M y z v
49 26 39 40 42 48 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y A z = v Base M x M y z v
50 38 49 eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y z = Base M × x M f y A z
51 10 adantr M LMod S CRing x Base S y M LMHom M z M LMHom M A LMod
52 3 5 23 22 lmodvscl A LMod x Base S y M LMHom M x A y M LMHom M
53 51 19 20 52 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y M LMHom M
54 1 3 43 mendmulr x A y M LMHom M z M LMHom M x A y A z = x A y z
55 53 13 54 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = x A y z
56 12 adantr M LMod S CRing x Base S y M LMHom M z M LMHom M A Ring
57 3 43 ringcl A Ring y M LMHom M z M LMHom M y A z M LMHom M
58 56 20 13 57 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A z M LMHom M
59 1 21 3 2 22 14 23 mendvsca x Base S y A z M LMHom M x A y A z = Base M × x M f y A z
60 19 58 59 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = Base M × x M f y A z
61 50 55 60 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y A z = x A y A z
62 simplr2 M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y M LMHom M
63 2 22 14 21 21 lmhmlin y M LMHom M x Base S z v Base M y x M z v = x M y z v
64 62 39 17 63 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y x M z v = x M y z v
65 64 mpteq2dva M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M y x M z v = v Base M x M y z v
66 simplll M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M M LMod
67 14 2 21 22 lmodvscl M LMod x Base S z v Base M x M z v Base M
68 66 39 17 67 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M x M z v Base M
69 1 21 3 2 22 14 23 mendvsca x Base S z M LMHom M x A z = Base M × x M f z
70 19 13 69 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A z = Base M × x M f z
71 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M v Base M z v V
72 26 39 71 42 18 offval2 M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f z = v Base M x M z v
73 70 72 eqtrd M LMod S CRing x Base S y M LMHom M z M LMHom M x A z = v Base M x M z v
74 fveq2 w = x M z v y w = y x M z v
75 68 73 33 74 fmptco M LMod S CRing x Base S y M LMHom M z M LMHom M y x A z = v Base M y x M z v
76 65 75 49 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M y x A z = Base M × x M f y A z
77 3 5 23 22 lmodvscl A LMod x Base S z M LMHom M x A z M LMHom M
78 51 19 13 77 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A z M LMHom M
79 1 3 43 mendmulr y M LMHom M x A z M LMHom M y A x A z = y x A z
80 20 78 79 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y A x A z = y x A z
81 76 80 60 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M y A x A z = x A y A z
82 4 6 7 8 9 10 12 61 81 isassad M LMod S CRing A AssAlg