Metamath Proof Explorer


Theorem merlem11

Description: Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem11 φ φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 meredith φ φ ¬ φ ¬ φ φ φ φ φ φ φ
2 merlem10 φ φ ψ φ φ ψ φ ψ
3 merlem10 φ φ ψ φ φ ψ φ ψ φ φ ¬ φ ¬ φ φ φ φ φ φ φ φ φ ψ φ ψ
4 2 3 ax-mp φ φ ¬ φ ¬ φ φ φ φ φ φ φ φ φ ψ φ ψ
5 1 4 ax-mp φ φ ψ φ ψ