Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
2nn0 |
|
3 |
2
|
numexp1 |
|
4 |
|
df-2 |
|
5 |
3 4
|
eqtri |
|
6 |
|
prmuz2 |
|
7 |
6
|
adantl |
|
8 |
|
eluz2gt1 |
|
9 |
7 8
|
syl |
|
10 |
|
1red |
|
11 |
|
2re |
|
12 |
11
|
a1i |
|
13 |
|
2ne0 |
|
14 |
13
|
a1i |
|
15 |
12 14 1
|
reexpclzd |
|
16 |
10 10 15
|
ltaddsubd |
|
17 |
9 16
|
mpbird |
|
18 |
5 17
|
eqbrtrid |
|
19 |
|
1zzd |
|
20 |
|
1lt2 |
|
21 |
20
|
a1i |
|
22 |
12 19 1 21
|
ltexp2d |
|
23 |
18 22
|
mpbird |
|
24 |
|
eluz2b1 |
|
25 |
1 23 24
|
sylanbrc |
|
26 |
|
simpllr |
|
27 |
|
prmnn |
|
28 |
26 27
|
syl |
|
29 |
28
|
nncnd |
|
30 |
|
2nn |
|
31 |
|
elfzuz |
|
32 |
31
|
ad2antlr |
|
33 |
|
eluz2nn |
|
34 |
32 33
|
syl |
|
35 |
34
|
nnnn0d |
|
36 |
|
nnexpcl |
|
37 |
30 35 36
|
sylancr |
|
38 |
37
|
nnzd |
|
39 |
|
peano2zm |
|
40 |
38 39
|
syl |
|
41 |
40
|
zred |
|
42 |
41
|
recnd |
|
43 |
|
0red |
|
44 |
|
1red |
|
45 |
|
0lt1 |
|
46 |
45
|
a1i |
|
47 |
|
eluz2gt1 |
|
48 |
32 47
|
syl |
|
49 |
11
|
a1i |
|
50 |
|
1zzd |
|
51 |
|
elfzelz |
|
52 |
51
|
ad2antlr |
|
53 |
20
|
a1i |
|
54 |
49 50 52 53
|
ltexp2d |
|
55 |
48 54
|
mpbid |
|
56 |
5 55
|
eqbrtrrid |
|
57 |
37
|
nnred |
|
58 |
44 44 57
|
ltaddsubd |
|
59 |
56 58
|
mpbid |
|
60 |
43 44 41 46 59
|
lttrd |
|
61 |
|
elnnz |
|
62 |
40 60 61
|
sylanbrc |
|
63 |
62
|
nnne0d |
|
64 |
29 42 63
|
divcan2d |
|
65 |
64 26
|
eqeltrd |
|
66 |
|
eluz2b2 |
|
67 |
62 59 66
|
sylanbrc |
|
68 |
37
|
nncnd |
|
69 |
|
ax-1cn |
|
70 |
|
subeq0 |
|
71 |
68 69 70
|
sylancl |
|
72 |
71
|
necon3bid |
|
73 |
63 72
|
mpbid |
|
74 |
|
simpr |
|
75 |
|
eluz2nn |
|
76 |
25 75
|
syl |
|
77 |
76
|
ad2antrr |
|
78 |
|
nndivdvds |
|
79 |
77 34 78
|
syl2anc |
|
80 |
74 79
|
mpbid |
|
81 |
80
|
nnnn0d |
|
82 |
68 73 81
|
geoser |
|
83 |
15
|
ad2antrr |
|
84 |
83
|
recnd |
|
85 |
|
negsubdi2 |
|
86 |
84 69 85
|
sylancl |
|
87 |
77
|
nncnd |
|
88 |
34
|
nncnd |
|
89 |
34
|
nnne0d |
|
90 |
87 88 89
|
divcan2d |
|
91 |
90
|
oveq2d |
|
92 |
49
|
recnd |
|
93 |
92 81 35
|
expmuld |
|
94 |
91 93
|
eqtr3d |
|
95 |
94
|
oveq2d |
|
96 |
86 95
|
eqtrd |
|
97 |
|
negsubdi2 |
|
98 |
68 69 97
|
sylancl |
|
99 |
96 98
|
oveq12d |
|
100 |
29 42 63
|
div2negd |
|
101 |
82 99 100
|
3eqtr2d |
|
102 |
|
fzfid |
|
103 |
|
elfznn0 |
|
104 |
|
zexpcl |
|
105 |
38 103 104
|
syl2an |
|
106 |
102 105
|
fsumzcl |
|
107 |
101 106
|
eqeltrrd |
|
108 |
42
|
mulid2d |
|
109 |
|
2z |
|
110 |
|
elfzm11 |
|
111 |
109 1 110
|
sylancr |
|
112 |
111
|
biimpa |
|
113 |
112
|
simp3d |
|
114 |
113
|
adantr |
|
115 |
1
|
ad2antrr |
|
116 |
49 52 115 53
|
ltexp2d |
|
117 |
114 116
|
mpbid |
|
118 |
57 83 44 117
|
ltsub1dd |
|
119 |
108 118
|
eqbrtrd |
|
120 |
28
|
nnred |
|
121 |
|
ltmuldiv |
|
122 |
44 120 41 60 121
|
syl112anc |
|
123 |
119 122
|
mpbid |
|
124 |
|
eluz2b1 |
|
125 |
107 123 124
|
sylanbrc |
|
126 |
|
nprm |
|
127 |
67 125 126
|
syl2anc |
|
128 |
65 127
|
pm2.65da |
|
129 |
128
|
ralrimiva |
|
130 |
|
isprm3 |
|
131 |
25 129 130
|
sylanbrc |
|