Metamath Proof Explorer


Theorem mertenslem1

Description: Lemma for mertens . (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses mertens.1 φ j 0 F j = A
mertens.2 φ j 0 K j = A
mertens.3 φ j 0 A
mertens.4 φ k 0 G k = B
mertens.5 φ k 0 B
mertens.6 φ k 0 H k = j = 0 k A G k j
mertens.7 φ seq 0 + K dom
mertens.8 φ seq 0 + G dom
mertens.9 φ E +
mertens.10 T = z | n 0 s 1 z = k n + 1 G k
mertens.11 ψ s n s k n + 1 G k < E 2 j 0 K j + 1
mertens.12 φ ψ t 0 m t K m < E 2 s sup T < + 1
mertens.13 φ 0 sup T < T T z w T w z
Assertion mertenslem1 φ y 0 m y j = 0 m A k m - j + 1 B < E

Proof

Step Hyp Ref Expression
1 mertens.1 φ j 0 F j = A
2 mertens.2 φ j 0 K j = A
3 mertens.3 φ j 0 A
4 mertens.4 φ k 0 G k = B
5 mertens.5 φ k 0 B
6 mertens.6 φ k 0 H k = j = 0 k A G k j
7 mertens.7 φ seq 0 + K dom
8 mertens.8 φ seq 0 + G dom
9 mertens.9 φ E +
10 mertens.10 T = z | n 0 s 1 z = k n + 1 G k
11 mertens.11 ψ s n s k n + 1 G k < E 2 j 0 K j + 1
12 mertens.12 φ ψ t 0 m t K m < E 2 s sup T < + 1
13 mertens.13 φ 0 sup T < T T z w T w z
14 12 simpld φ ψ
15 14 11 sylib φ s n s k n + 1 G k < E 2 j 0 K j + 1
16 15 simpld φ s
17 16 nnnn0d φ s 0
18 12 simprd φ t 0 m t K m < E 2 s sup T < + 1
19 18 simpld φ t 0
20 17 19 nn0addcld φ s + t 0
21 fzfid φ m s + t 0 m Fin
22 simpl φ m s + t φ
23 elfznn0 j 0 m j 0
24 22 23 3 syl2an φ m s + t j 0 m A
25 eqid m - j + 1 = m - j + 1
26 fznn0sub j 0 m m j 0
27 26 adantl φ m s + t j 0 m m j 0
28 peano2nn0 m j 0 m - j + 1 0
29 27 28 syl φ m s + t j 0 m m - j + 1 0
30 29 nn0zd φ m s + t j 0 m m - j + 1
31 simplll φ m s + t j 0 m k m - j + 1 φ
32 eluznn0 m - j + 1 0 k m - j + 1 k 0
33 29 32 sylan φ m s + t j 0 m k m - j + 1 k 0
34 31 33 4 syl2anc φ m s + t j 0 m k m - j + 1 G k = B
35 31 33 5 syl2anc φ m s + t j 0 m k m - j + 1 B
36 8 ad2antrr φ m s + t j 0 m seq 0 + G dom
37 nn0uz 0 = 0
38 simpll φ m s + t j 0 m φ
39 4 5 eqeltrd φ k 0 G k
40 38 39 sylan φ m s + t j 0 m k 0 G k
41 37 29 40 iserex φ m s + t j 0 m seq 0 + G dom seq m - j + 1 + G dom
42 36 41 mpbid φ m s + t j 0 m seq m - j + 1 + G dom
43 25 30 34 35 42 isumcl φ m s + t j 0 m k m - j + 1 B
44 24 43 mulcld φ m s + t j 0 m A k m - j + 1 B
45 21 44 fsumcl φ m s + t j = 0 m A k m - j + 1 B
46 45 abscld φ m s + t j = 0 m A k m - j + 1 B
47 44 abscld φ m s + t j 0 m A k m - j + 1 B
48 21 47 fsumrecl φ m s + t j = 0 m A k m - j + 1 B
49 9 rpred φ E
50 49 adantr φ m s + t E
51 21 44 fsumabs φ m s + t j = 0 m A k m - j + 1 B j = 0 m A k m - j + 1 B
52 fzfid φ m s + t 0 m s Fin
53 17 adantr φ m s + t s 0
54 53 nn0ge0d φ m s + t 0 s
55 eluzelz m s + t m
56 55 adantl φ m s + t m
57 56 zred φ m s + t m
58 53 nn0red φ m s + t s
59 57 58 subge02d φ m s + t 0 s m s m
60 54 59 mpbid φ m s + t m s m
61 53 37 eleqtrdi φ m s + t s 0
62 16 nnzd φ s
63 uzid s s s
64 62 63 syl φ s s
65 uzaddcl s s t 0 s + t s
66 64 19 65 syl2anc φ s + t s
67 eqid s = s
68 67 uztrn2 s + t s m s + t m s
69 66 68 sylan φ m s + t m s
70 elfzuzb s 0 m s 0 m s
71 61 69 70 sylanbrc φ m s + t s 0 m
72 fznn0sub2 s 0 m m s 0 m
73 71 72 syl φ m s + t m s 0 m
74 elfzelz m s 0 m m s
75 73 74 syl φ m s + t m s
76 eluz m s m m m s m s m
77 75 56 76 syl2anc φ m s + t m m s m s m
78 60 77 mpbird φ m s + t m m s
79 fzss2 m m s 0 m s 0 m
80 78 79 syl φ m s + t 0 m s 0 m
81 80 sselda φ m s + t j 0 m s j 0 m
82 3 abscld φ j 0 A
83 22 23 82 syl2an φ m s + t j 0 m A
84 43 abscld φ m s + t j 0 m k m - j + 1 B
85 83 84 remulcld φ m s + t j 0 m A k m - j + 1 B
86 81 85 syldan φ m s + t j 0 m s A k m - j + 1 B
87 52 86 fsumrecl φ m s + t j = 0 m s A k m - j + 1 B
88 fzfid φ m s + t m - s + 1 m Fin
89 elfznn0 m s 0 m m s 0
90 73 89 syl φ m s + t m s 0
91 peano2nn0 m s 0 m - s + 1 0
92 90 91 syl φ m s + t m - s + 1 0
93 92 37 eleqtrdi φ m s + t m - s + 1 0
94 fzss1 m - s + 1 0 m - s + 1 m 0 m
95 93 94 syl φ m s + t m - s + 1 m 0 m
96 95 sselda φ m s + t j m - s + 1 m j 0 m
97 96 85 syldan φ m s + t j m - s + 1 m A k m - j + 1 B
98 88 97 fsumrecl φ m s + t j = m - s + 1 m A k m - j + 1 B
99 9 rphalfcld φ E 2 +
100 99 rpred φ E 2
101 100 adantr φ m s + t E 2
102 elfznn0 j 0 m s j 0
103 22 102 82 syl2an φ m s + t j 0 m s A
104 52 103 fsumrecl φ m s + t j = 0 m s A
105 104 101 remulcld φ m s + t j = 0 m s A E 2
106 0zd φ 0
107 eqidd φ j 0 K j = K j
108 2 82 eqeltrd φ j 0 K j
109 37 106 107 108 7 isumrecl φ j 0 K j
110 3 absge0d φ j 0 0 A
111 110 2 breqtrrd φ j 0 0 K j
112 37 106 107 108 7 111 isumge0 φ 0 j 0 K j
113 109 112 ge0p1rpd φ j 0 K j + 1 +
114 113 adantr φ m s + t j 0 K j + 1 +
115 105 114 rerpdivcld φ m s + t j = 0 m s A E 2 j 0 K j + 1
116 99 113 rpdivcld φ E 2 j 0 K j + 1 +
117 116 rpred φ E 2 j 0 K j + 1
118 117 ad2antrr φ m s + t j 0 m s E 2 j 0 K j + 1
119 103 118 remulcld φ m s + t j 0 m s A E 2 j 0 K j + 1
120 81 30 syldan φ m s + t j 0 m s m - j + 1
121 simplll φ m s + t j 0 m s k m - j + 1 φ
122 81 29 syldan φ m s + t j 0 m s m - j + 1 0
123 122 32 sylan φ m s + t j 0 m s k m - j + 1 k 0
124 121 123 4 syl2anc φ m s + t j 0 m s k m - j + 1 G k = B
125 121 123 5 syl2anc φ m s + t j 0 m s k m - j + 1 B
126 81 42 syldan φ m s + t j 0 m s seq m - j + 1 + G dom
127 25 120 124 125 126 isumcl φ m s + t j 0 m s k m - j + 1 B
128 127 abscld φ m s + t j 0 m s k m - j + 1 B
129 82 110 jca φ j 0 A 0 A
130 22 102 129 syl2an φ m s + t j 0 m s A 0 A
131 124 sumeq2dv φ m s + t j 0 m s k m - j + 1 G k = k m - j + 1 B
132 131 fveq2d φ m s + t j 0 m s k m - j + 1 G k = k m - j + 1 B
133 fvoveq1 n = m j n + 1 = m - j + 1
134 133 sumeq1d n = m j k n + 1 G k = k m - j + 1 G k
135 134 fveq2d n = m j k n + 1 G k = k m - j + 1 G k
136 135 breq1d n = m j k n + 1 G k < E 2 j 0 K j + 1 k m - j + 1 G k < E 2 j 0 K j + 1
137 15 simprd φ n s k n + 1 G k < E 2 j 0 K j + 1
138 137 ad2antrr φ m s + t j 0 m s n s k n + 1 G k < E 2 j 0 K j + 1
139 elfzelz j 0 m s j
140 139 adantl φ m s + t j 0 m s j
141 140 zred φ m s + t j 0 m s j
142 55 ad2antlr φ m s + t j 0 m s m
143 142 zred φ m s + t j 0 m s m
144 62 ad2antrr φ m s + t j 0 m s s
145 144 zred φ m s + t j 0 m s s
146 elfzle2 j 0 m s j m s
147 146 adantl φ m s + t j 0 m s j m s
148 141 143 145 147 lesubd φ m s + t j 0 m s s m j
149 142 140 zsubcld φ m s + t j 0 m s m j
150 eluz s m j m j s s m j
151 144 149 150 syl2anc φ m s + t j 0 m s m j s s m j
152 148 151 mpbird φ m s + t j 0 m s m j s
153 136 138 152 rspcdva φ m s + t j 0 m s k m - j + 1 G k < E 2 j 0 K j + 1
154 132 153 eqbrtrrd φ m s + t j 0 m s k m - j + 1 B < E 2 j 0 K j + 1
155 128 118 154 ltled φ m s + t j 0 m s k m - j + 1 B E 2 j 0 K j + 1
156 lemul2a k m - j + 1 B E 2 j 0 K j + 1 A 0 A k m - j + 1 B E 2 j 0 K j + 1 A k m - j + 1 B A E 2 j 0 K j + 1
157 128 118 130 155 156 syl31anc φ m s + t j 0 m s A k m - j + 1 B A E 2 j 0 K j + 1
158 52 86 119 157 fsumle φ m s + t j = 0 m s A k m - j + 1 B j = 0 m s A E 2 j 0 K j + 1
159 104 recnd φ m s + t j = 0 m s A
160 99 rpcnd φ E 2
161 160 adantr φ m s + t E 2
162 peano2re j 0 K j j 0 K j + 1
163 109 162 syl φ j 0 K j + 1
164 163 recnd φ j 0 K j + 1
165 164 adantr φ m s + t j 0 K j + 1
166 113 rpne0d φ j 0 K j + 1 0
167 166 adantr φ m s + t j 0 K j + 1 0
168 159 161 165 167 divassd φ m s + t j = 0 m s A E 2 j 0 K j + 1 = j = 0 m s A E 2 j 0 K j + 1
169 fveq2 n = j K n = K j
170 169 cbvsumv n 0 K n = j 0 K j
171 170 oveq1i n 0 K n + 1 = j 0 K j + 1
172 171 oveq2i E 2 n 0 K n + 1 = E 2 j 0 K j + 1
173 172 116 eqeltrid φ E 2 n 0 K n + 1 +
174 173 rpcnd φ E 2 n 0 K n + 1
175 174 adantr φ m s + t E 2 n 0 K n + 1
176 82 recnd φ j 0 A
177 22 102 176 syl2an φ m s + t j 0 m s A
178 52 175 177 fsummulc1 φ m s + t j = 0 m s A E 2 n 0 K n + 1 = j = 0 m s A E 2 n 0 K n + 1
179 172 oveq2i j = 0 m s A E 2 n 0 K n + 1 = j = 0 m s A E 2 j 0 K j + 1
180 172 oveq2i A E 2 n 0 K n + 1 = A E 2 j 0 K j + 1
181 180 a1i j 0 m s A E 2 n 0 K n + 1 = A E 2 j 0 K j + 1
182 181 sumeq2i j = 0 m s A E 2 n 0 K n + 1 = j = 0 m s A E 2 j 0 K j + 1
183 178 179 182 3eqtr3g φ m s + t j = 0 m s A E 2 j 0 K j + 1 = j = 0 m s A E 2 j 0 K j + 1
184 168 183 eqtrd φ m s + t j = 0 m s A E 2 j 0 K j + 1 = j = 0 m s A E 2 j 0 K j + 1
185 158 184 breqtrrd φ m s + t j = 0 m s A k m - j + 1 B j = 0 m s A E 2 j 0 K j + 1
186 109 adantr φ m s + t j 0 K j
187 163 adantr φ m s + t j 0 K j + 1
188 0zd φ m s + t 0
189 fz0ssnn0 0 m s 0
190 189 a1i φ m s + t 0 m s 0
191 2 adantlr φ m s + t j 0 K j = A
192 82 adantlr φ m s + t j 0 A
193 110 adantlr φ m s + t j 0 0 A
194 7 adantr φ m s + t seq 0 + K dom
195 37 188 52 190 191 192 193 194 isumless φ m s + t j = 0 m s A j 0 A
196 2 sumeq2dv φ j 0 K j = j 0 A
197 196 adantr φ m s + t j 0 K j = j 0 A
198 195 197 breqtrrd φ m s + t j = 0 m s A j 0 K j
199 109 ltp1d φ j 0 K j < j 0 K j + 1
200 199 adantr φ m s + t j 0 K j < j 0 K j + 1
201 104 186 187 198 200 lelttrd φ m s + t j = 0 m s A < j 0 K j + 1
202 99 rpregt0d φ E 2 0 < E 2
203 202 adantr φ m s + t E 2 0 < E 2
204 ltmul1 j = 0 m s A j 0 K j + 1 E 2 0 < E 2 j = 0 m s A < j 0 K j + 1 j = 0 m s A E 2 < j 0 K j + 1 E 2
205 104 187 203 204 syl3anc φ m s + t j = 0 m s A < j 0 K j + 1 j = 0 m s A E 2 < j 0 K j + 1 E 2
206 201 205 mpbid φ m s + t j = 0 m s A E 2 < j 0 K j + 1 E 2
207 113 rpregt0d φ j 0 K j + 1 0 < j 0 K j + 1
208 207 adantr φ m s + t j 0 K j + 1 0 < j 0 K j + 1
209 ltdivmul j = 0 m s A E 2 E 2 j 0 K j + 1 0 < j 0 K j + 1 j = 0 m s A E 2 j 0 K j + 1 < E 2 j = 0 m s A E 2 < j 0 K j + 1 E 2
210 105 101 208 209 syl3anc φ m s + t j = 0 m s A E 2 j 0 K j + 1 < E 2 j = 0 m s A E 2 < j 0 K j + 1 E 2
211 206 210 mpbird φ m s + t j = 0 m s A E 2 j 0 K j + 1 < E 2
212 87 115 101 185 211 lelttrd φ m s + t j = 0 m s A k m - j + 1 B < E 2
213 13 simprd φ T T z w T w z
214 suprcl T T z w T w z sup T <
215 213 214 syl φ sup T <
216 100 215 remulcld φ E 2 sup T <
217 13 simpld φ 0 sup T <
218 215 217 ge0p1rpd φ sup T < + 1 +
219 216 218 rerpdivcld φ E 2 sup T < sup T < + 1
220 219 adantr φ m s + t E 2 sup T < sup T < + 1
221 16 nnrpd φ s +
222 99 221 rpdivcld φ E 2 s +
223 222 218 rpdivcld φ E 2 s sup T < + 1 +
224 223 rpred φ E 2 s sup T < + 1
225 224 215 remulcld φ E 2 s sup T < + 1 sup T <
226 225 ad2antrr φ m s + t j m - s + 1 m E 2 s sup T < + 1 sup T <
227 simpll φ m s + t j m - s + 1 m φ
228 96 23 syl φ m s + t j m - s + 1 m j 0
229 227 228 82 syl2anc φ m s + t j m - s + 1 m A
230 224 ad2antrr φ m s + t j m - s + 1 m E 2 s sup T < + 1
231 227 228 2 syl2anc φ m s + t j m - s + 1 m K j = A
232 fveq2 m = j K m = K j
233 232 breq1d m = j K m < E 2 s sup T < + 1 K j < E 2 s sup T < + 1
234 18 simprd φ m t K m < E 2 s sup T < + 1
235 234 ad2antrr φ m s + t j m - s + 1 m m t K m < E 2 s sup T < + 1
236 elfzuz j m - s + 1 m j m - s + 1
237 eluzle m s + t s + t m
238 237 adantl φ m s + t s + t m
239 19 nn0zd φ t
240 239 adantr φ m s + t t
241 240 zred φ m s + t t
242 58 241 57 leaddsub2d φ m s + t s + t m t m s
243 238 242 mpbid φ m s + t t m s
244 eluz t m s m s t t m s
245 240 75 244 syl2anc φ m s + t m s t t m s
246 243 245 mpbird φ m s + t m s t
247 peano2uz m s t m - s + 1 t
248 246 247 syl φ m s + t m - s + 1 t
249 uztrn j m - s + 1 m - s + 1 t j t
250 236 248 249 syl2anr φ m s + t j m - s + 1 m j t
251 233 235 250 rspcdva φ m s + t j m - s + 1 m K j < E 2 s sup T < + 1
252 231 251 eqbrtrrd φ m s + t j m - s + 1 m A < E 2 s sup T < + 1
253 229 230 252 ltled φ m s + t j m - s + 1 m A E 2 s sup T < + 1
254 213 ad2antrr φ m s + t j m - s + 1 m T T z w T w z
255 57 adantr φ m s + t j m - s + 1 m m
256 peano2zm s s 1
257 62 256 syl φ s 1
258 257 zred φ s 1
259 258 ad2antrr φ m s + t j m - s + 1 m s 1
260 228 nn0red φ m s + t j m - s + 1 m j
261 56 zcnd φ m s + t m
262 58 recnd φ m s + t s
263 1cnd φ m s + t 1
264 261 262 263 subsubd φ m s + t m s 1 = m - s + 1
265 264 adantr φ m s + t j m - s + 1 m m s 1 = m - s + 1
266 elfzle1 j m - s + 1 m m - s + 1 j
267 266 adantl φ m s + t j m - s + 1 m m - s + 1 j
268 265 267 eqbrtrd φ m s + t j m - s + 1 m m s 1 j
269 255 259 260 268 subled φ m s + t j m - s + 1 m m j s 1
270 96 26 syl φ m s + t j m - s + 1 m m j 0
271 270 37 eleqtrdi φ m s + t j m - s + 1 m m j 0
272 257 ad2antrr φ m s + t j m - s + 1 m s 1
273 elfz5 m j 0 s 1 m j 0 s 1 m j s 1
274 271 272 273 syl2anc φ m s + t j m - s + 1 m m j 0 s 1 m j s 1
275 269 274 mpbird φ m s + t j m - s + 1 m m j 0 s 1
276 simplll φ m s + t j m - s + 1 m k m - j + 1 φ
277 96 29 syldan φ m s + t j m - s + 1 m m - j + 1 0
278 277 32 sylan φ m s + t j m - s + 1 m k m - j + 1 k 0
279 276 278 4 syl2anc φ m s + t j m - s + 1 m k m - j + 1 G k = B
280 279 sumeq2dv φ m s + t j m - s + 1 m k m - j + 1 G k = k m - j + 1 B
281 280 eqcomd φ m s + t j m - s + 1 m k m - j + 1 B = k m - j + 1 G k
282 281 fveq2d φ m s + t j m - s + 1 m k m - j + 1 B = k m - j + 1 G k
283 135 rspceeqv m j 0 s 1 k m - j + 1 B = k m - j + 1 G k n 0 s 1 k m - j + 1 B = k n + 1 G k
284 275 282 283 syl2anc φ m s + t j m - s + 1 m n 0 s 1 k m - j + 1 B = k n + 1 G k
285 fvex k m - j + 1 B V
286 eqeq1 z = k m - j + 1 B z = k n + 1 G k k m - j + 1 B = k n + 1 G k
287 286 rexbidv z = k m - j + 1 B n 0 s 1 z = k n + 1 G k n 0 s 1 k m - j + 1 B = k n + 1 G k
288 285 287 10 elab2 k m - j + 1 B T n 0 s 1 k m - j + 1 B = k n + 1 G k
289 284 288 sylibr φ m s + t j m - s + 1 m k m - j + 1 B T
290 suprub T T z w T w z k m - j + 1 B T k m - j + 1 B sup T <
291 254 289 290 syl2anc φ m s + t j m - s + 1 m k m - j + 1 B sup T <
292 227 228 129 syl2anc φ m s + t j m - s + 1 m A 0 A
293 96 84 syldan φ m s + t j m - s + 1 m k m - j + 1 B
294 43 absge0d φ m s + t j 0 m 0 k m - j + 1 B
295 96 294 syldan φ m s + t j m - s + 1 m 0 k m - j + 1 B
296 293 295 jca φ m s + t j m - s + 1 m k m - j + 1 B 0 k m - j + 1 B
297 215 ad2antrr φ m s + t j m - s + 1 m sup T <
298 lemul12a A 0 A E 2 s sup T < + 1 k m - j + 1 B 0 k m - j + 1 B sup T < A E 2 s sup T < + 1 k m - j + 1 B sup T < A k m - j + 1 B E 2 s sup T < + 1 sup T <
299 292 230 296 297 298 syl22anc φ m s + t j m - s + 1 m A E 2 s sup T < + 1 k m - j + 1 B sup T < A k m - j + 1 B E 2 s sup T < + 1 sup T <
300 253 291 299 mp2and φ m s + t j m - s + 1 m A k m - j + 1 B E 2 s sup T < + 1 sup T <
301 88 97 226 300 fsumle φ m s + t j = m - s + 1 m A k m - j + 1 B j = m - s + 1 m E 2 s sup T < + 1 sup T <
302 225 recnd φ E 2 s sup T < + 1 sup T <
303 302 adantr φ m s + t E 2 s sup T < + 1 sup T <
304 fsumconst m - s + 1 m Fin E 2 s sup T < + 1 sup T < j = m - s + 1 m E 2 s sup T < + 1 sup T < = m - s + 1 m E 2 s sup T < + 1 sup T <
305 88 303 304 syl2anc φ m s + t j = m - s + 1 m E 2 s sup T < + 1 sup T < = m - s + 1 m E 2 s sup T < + 1 sup T <
306 1zzd φ m s + t 1
307 62 adantr φ m s + t s
308 fzen 1 s m s 1 s 1 + m - s s + m - s
309 306 307 75 308 syl3anc φ m s + t 1 s 1 + m - s s + m - s
310 ax-1cn 1
311 75 zcnd φ m s + t m s
312 addcom 1 m s 1 + m - s = m - s + 1
313 310 311 312 sylancr φ m s + t 1 + m - s = m - s + 1
314 262 261 pncan3d φ m s + t s + m - s = m
315 313 314 oveq12d φ m s + t 1 + m - s s + m - s = m - s + 1 m
316 309 315 breqtrd φ m s + t 1 s m - s + 1 m
317 fzfid φ m s + t 1 s Fin
318 hashen 1 s Fin m - s + 1 m Fin 1 s = m - s + 1 m 1 s m - s + 1 m
319 317 88 318 syl2anc φ m s + t 1 s = m - s + 1 m 1 s m - s + 1 m
320 316 319 mpbird φ m s + t 1 s = m - s + 1 m
321 hashfz1 s 0 1 s = s
322 53 321 syl φ m s + t 1 s = s
323 320 322 eqtr3d φ m s + t m - s + 1 m = s
324 323 oveq1d φ m s + t m - s + 1 m E 2 s sup T < + 1 sup T < = s E 2 s sup T < + 1 sup T <
325 215 recnd φ sup T <
326 218 rpcnne0d φ sup T < + 1 sup T < + 1 0
327 div23 E 2 sup T < sup T < + 1 sup T < + 1 0 E 2 sup T < sup T < + 1 = E 2 sup T < + 1 sup T <
328 160 325 326 327 syl3anc φ E 2 sup T < sup T < + 1 = E 2 sup T < + 1 sup T <
329 62 zcnd φ s
330 222 rpcnd φ E 2 s
331 divass s E 2 s sup T < + 1 sup T < + 1 0 s E 2 s sup T < + 1 = s E 2 s sup T < + 1
332 329 330 326 331 syl3anc φ s E 2 s sup T < + 1 = s E 2 s sup T < + 1
333 16 nnne0d φ s 0
334 160 329 333 divcan2d φ s E 2 s = E 2
335 334 oveq1d φ s E 2 s sup T < + 1 = E 2 sup T < + 1
336 332 335 eqtr3d φ s E 2 s sup T < + 1 = E 2 sup T < + 1
337 336 oveq1d φ s E 2 s sup T < + 1 sup T < = E 2 sup T < + 1 sup T <
338 223 rpcnd φ E 2 s sup T < + 1
339 329 338 325 mulassd φ s E 2 s sup T < + 1 sup T < = s E 2 s sup T < + 1 sup T <
340 328 337 339 3eqtr2rd φ s E 2 s sup T < + 1 sup T < = E 2 sup T < sup T < + 1
341 340 adantr φ m s + t s E 2 s sup T < + 1 sup T < = E 2 sup T < sup T < + 1
342 305 324 341 3eqtrd φ m s + t j = m - s + 1 m E 2 s sup T < + 1 sup T < = E 2 sup T < sup T < + 1
343 301 342 breqtrd φ m s + t j = m - s + 1 m A k m - j + 1 B E 2 sup T < sup T < + 1
344 peano2re sup T < sup T < + 1
345 215 344 syl φ sup T < + 1
346 215 ltp1d φ sup T < < sup T < + 1
347 215 345 99 346 ltmul2dd φ E 2 sup T < < E 2 sup T < + 1
348 216 100 218 ltdivmul2d φ E 2 sup T < sup T < + 1 < E 2 E 2 sup T < < E 2 sup T < + 1
349 347 348 mpbird φ E 2 sup T < sup T < + 1 < E 2
350 349 adantr φ m s + t E 2 sup T < sup T < + 1 < E 2
351 98 220 101 343 350 lelttrd φ m s + t j = m - s + 1 m A k m - j + 1 B < E 2
352 87 98 101 101 212 351 lt2addd φ m s + t j = 0 m s A k m - j + 1 B + j = m - s + 1 m A k m - j + 1 B < E 2 + E 2
353 24 43 absmuld φ m s + t j 0 m A k m - j + 1 B = A k m - j + 1 B
354 353 sumeq2dv φ m s + t j = 0 m A k m - j + 1 B = j = 0 m A k m - j + 1 B
355 75 zred φ m s + t m s
356 355 ltp1d φ m s + t m s < m - s + 1
357 fzdisj m s < m - s + 1 0 m s m - s + 1 m =
358 356 357 syl φ m s + t 0 m s m - s + 1 m =
359 fzsplit m s 0 m 0 m = 0 m s m - s + 1 m
360 73 359 syl φ m s + t 0 m = 0 m s m - s + 1 m
361 85 recnd φ m s + t j 0 m A k m - j + 1 B
362 358 360 21 361 fsumsplit φ m s + t j = 0 m A k m - j + 1 B = j = 0 m s A k m - j + 1 B + j = m - s + 1 m A k m - j + 1 B
363 354 362 eqtr2d φ m s + t j = 0 m s A k m - j + 1 B + j = m - s + 1 m A k m - j + 1 B = j = 0 m A k m - j + 1 B
364 9 rpcnd φ E
365 364 adantr φ m s + t E
366 365 2halvesd φ m s + t E 2 + E 2 = E
367 352 363 366 3brtr3d φ m s + t j = 0 m A k m - j + 1 B < E
368 46 48 50 51 367 lelttrd φ m s + t j = 0 m A k m - j + 1 B < E
369 368 ralrimiva φ m s + t j = 0 m A k m - j + 1 B < E
370 fveq2 y = s + t y = s + t
371 370 raleqdv y = s + t m y j = 0 m A k m - j + 1 B < E m s + t j = 0 m A k m - j + 1 B < E
372 371 rspcev s + t 0 m s + t j = 0 m A k m - j + 1 B < E y 0 m y j = 0 m A k m - j + 1 B < E
373 20 369 372 syl2anc φ y 0 m y j = 0 m A k m - j + 1 B < E