| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
|
| 2 |
|
mertens.2 |
|
| 3 |
|
mertens.3 |
|
| 4 |
|
mertens.4 |
|
| 5 |
|
mertens.5 |
|
| 6 |
|
mertens.6 |
|
| 7 |
|
mertens.7 |
|
| 8 |
|
mertens.8 |
|
| 9 |
|
mertens.9 |
|
| 10 |
|
mertens.10 |
|
| 11 |
|
mertens.11 |
|
| 12 |
|
nnuz |
|
| 13 |
|
1zzd |
|
| 14 |
9
|
rphalfcld |
|
| 15 |
|
nn0uz |
|
| 16 |
|
0zd |
|
| 17 |
|
eqidd |
|
| 18 |
3
|
abscld |
|
| 19 |
2 18
|
eqeltrd |
|
| 20 |
15 16 17 19 7
|
isumrecl |
|
| 21 |
3
|
absge0d |
|
| 22 |
21 2
|
breqtrrd |
|
| 23 |
15 16 17 19 7 22
|
isumge0 |
|
| 24 |
20 23
|
ge0p1rpd |
|
| 25 |
14 24
|
rpdivcld |
|
| 26 |
|
eqidd |
|
| 27 |
15 16 4 5 8
|
isumclim2 |
|
| 28 |
12 13 25 26 27
|
climi2 |
|
| 29 |
|
eluznn |
|
| 30 |
4 5
|
eqeltrd |
|
| 31 |
15 16 30
|
serf |
|
| 32 |
|
nnnn0 |
|
| 33 |
|
ffvelcdm |
|
| 34 |
31 32 33
|
syl2an |
|
| 35 |
15 16 4 5 8
|
isumcl |
|
| 36 |
35
|
adantr |
|
| 37 |
34 36
|
abssubd |
|
| 38 |
|
eqid |
|
| 39 |
32
|
adantl |
|
| 40 |
|
peano2nn0 |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
nn0zd |
|
| 43 |
|
simpll |
|
| 44 |
|
eluznn0 |
|
| 45 |
41 44
|
sylan |
|
| 46 |
43 45 4
|
syl2anc |
|
| 47 |
43 45 5
|
syl2anc |
|
| 48 |
8
|
adantr |
|
| 49 |
30
|
adantlr |
|
| 50 |
15 41 49
|
iserex |
|
| 51 |
48 50
|
mpbid |
|
| 52 |
38 42 46 47 51
|
isumcl |
|
| 53 |
34 52
|
pncan2d |
|
| 54 |
4
|
adantlr |
|
| 55 |
5
|
adantlr |
|
| 56 |
15 38 41 54 55 48
|
isumsplit |
|
| 57 |
|
nncn |
|
| 58 |
57
|
adantl |
|
| 59 |
|
ax-1cn |
|
| 60 |
|
pncan |
|
| 61 |
58 59 60
|
sylancl |
|
| 62 |
61
|
oveq2d |
|
| 63 |
62
|
sumeq1d |
|
| 64 |
|
simpl |
|
| 65 |
|
elfznn0 |
|
| 66 |
64 65 4
|
syl2an |
|
| 67 |
39 15
|
eleqtrdi |
|
| 68 |
64 65 5
|
syl2an |
|
| 69 |
66 67 68
|
fsumser |
|
| 70 |
63 69
|
eqtrd |
|
| 71 |
70
|
oveq1d |
|
| 72 |
56 71
|
eqtrd |
|
| 73 |
72
|
oveq1d |
|
| 74 |
46
|
sumeq2dv |
|
| 75 |
53 73 74
|
3eqtr4d |
|
| 76 |
75
|
fveq2d |
|
| 77 |
37 76
|
eqtrd |
|
| 78 |
77
|
breq1d |
|
| 79 |
29 78
|
sylan2 |
|
| 80 |
79
|
anassrs |
|
| 81 |
80
|
ralbidva |
|
| 82 |
|
fvoveq1 |
|
| 83 |
82
|
sumeq1d |
|
| 84 |
83
|
fveq2d |
|
| 85 |
84
|
breq1d |
|
| 86 |
85
|
cbvralvw |
|
| 87 |
81 86
|
bitrdi |
|
| 88 |
|
0zd |
|
| 89 |
14
|
adantr |
|
| 90 |
11
|
simplbi |
|
| 91 |
90
|
adantl |
|
| 92 |
91
|
nnrpd |
|
| 93 |
89 92
|
rpdivcld |
|
| 94 |
|
eqid |
|
| 95 |
|
elfznn0 |
|
| 96 |
95
|
adantl |
|
| 97 |
|
peano2nn0 |
|
| 98 |
96 97
|
syl |
|
| 99 |
98
|
nn0zd |
|
| 100 |
|
eqidd |
|
| 101 |
|
simplll |
|
| 102 |
|
eluznn0 |
|
| 103 |
98 102
|
sylan |
|
| 104 |
101 103 30
|
syl2anc |
|
| 105 |
8
|
ad2antrr |
|
| 106 |
30
|
ad4ant14 |
|
| 107 |
15 98 106
|
iserex |
|
| 108 |
105 107
|
mpbid |
|
| 109 |
94 99 100 104 108
|
isumcl |
|
| 110 |
109
|
abscld |
|
| 111 |
|
eleq1a |
|
| 112 |
110 111
|
syl |
|
| 113 |
112
|
rexlimdva |
|
| 114 |
113
|
abssdv |
|
| 115 |
10 114
|
eqsstrid |
|
| 116 |
|
fzfid |
|
| 117 |
|
abrexfi |
|
| 118 |
116 117
|
syl |
|
| 119 |
10 118
|
eqeltrid |
|
| 120 |
|
nnm1nn0 |
|
| 121 |
91 120
|
syl |
|
| 122 |
121 15
|
eleqtrdi |
|
| 123 |
|
eluzfz1 |
|
| 124 |
122 123
|
syl |
|
| 125 |
|
nnnn0 |
|
| 126 |
125 4
|
sylan2 |
|
| 127 |
126
|
sumeq2dv |
|
| 128 |
127
|
adantr |
|
| 129 |
128
|
fveq2d |
|
| 130 |
129
|
eqcomd |
|
| 131 |
|
fv0p1e1 |
|
| 132 |
131 12
|
eqtr4di |
|
| 133 |
132
|
sumeq1d |
|
| 134 |
133
|
fveq2d |
|
| 135 |
134
|
rspceeqv |
|
| 136 |
124 130 135
|
syl2anc |
|
| 137 |
|
fvex |
|
| 138 |
|
eqeq1 |
|
| 139 |
138
|
rexbidv |
|
| 140 |
137 139 10
|
elab2 |
|
| 141 |
136 140
|
sylibr |
|
| 142 |
141
|
ne0d |
|
| 143 |
|
ltso |
|
| 144 |
|
fisupcl |
|
| 145 |
143 144
|
mpan |
|
| 146 |
119 142 115 145
|
syl3anc |
|
| 147 |
115 146
|
sseldd |
|
| 148 |
|
0red |
|
| 149 |
125 5
|
sylan2 |
|
| 150 |
|
1nn0 |
|
| 151 |
150
|
a1i |
|
| 152 |
15 151 30
|
iserex |
|
| 153 |
8 152
|
mpbid |
|
| 154 |
12 13 126 149 153
|
isumcl |
|
| 155 |
154
|
adantr |
|
| 156 |
155
|
abscld |
|
| 157 |
155
|
absge0d |
|
| 158 |
|
fimaxre2 |
|
| 159 |
115 119 158
|
syl2anc |
|
| 160 |
115 142 159 141
|
suprubd |
|
| 161 |
148 156 147 157 160
|
letrd |
|
| 162 |
147 161
|
ge0p1rpd |
|
| 163 |
93 162
|
rpdivcld |
|
| 164 |
|
fveq2 |
|
| 165 |
|
eqid |
|
| 166 |
|
fvex |
|
| 167 |
164 165 166
|
fvmpt |
|
| 168 |
167
|
adantl |
|
| 169 |
|
nn0ex |
|
| 170 |
169
|
mptex |
|
| 171 |
170
|
a1i |
|
| 172 |
|
elnn0uz |
|
| 173 |
|
fveq2 |
|
| 174 |
|
fvex |
|
| 175 |
173 165 174
|
fvmpt |
|
| 176 |
175
|
adantl |
|
| 177 |
172 176
|
sylan2br |
|
| 178 |
16 177
|
seqfeq |
|
| 179 |
178 7
|
eqeltrd |
|
| 180 |
176 2
|
eqtrd |
|
| 181 |
180 18
|
eqeltrd |
|
| 182 |
181
|
recnd |
|
| 183 |
15 16 171 179 182
|
serf0 |
|
| 184 |
183
|
adantr |
|
| 185 |
15 88 163 168 184
|
climi0 |
|
| 186 |
|
simplll |
|
| 187 |
|
eluznn0 |
|
| 188 |
187
|
adantll |
|
| 189 |
19 22
|
absidd |
|
| 190 |
189
|
ralrimiva |
|
| 191 |
|
fveq2 |
|
| 192 |
191
|
fveq2d |
|
| 193 |
192 191
|
eqeq12d |
|
| 194 |
193
|
rspccva |
|
| 195 |
190 194
|
sylan |
|
| 196 |
186 188 195
|
syl2anc |
|
| 197 |
196
|
breq1d |
|
| 198 |
197
|
ralbidva |
|
| 199 |
164
|
breq1d |
|
| 200 |
199
|
cbvralvw |
|
| 201 |
198 200
|
bitr4di |
|
| 202 |
1
|
ad4ant14 |
|
| 203 |
2
|
ad4ant14 |
|
| 204 |
3
|
ad4ant14 |
|
| 205 |
4
|
ad4ant14 |
|
| 206 |
5
|
ad4ant14 |
|
| 207 |
6
|
ad4ant14 |
|
| 208 |
7
|
ad2antrr |
|
| 209 |
8
|
ad2antrr |
|
| 210 |
9
|
ad2antrr |
|
| 211 |
200
|
anbi2i |
|
| 212 |
211
|
anbi2i |
|
| 213 |
212
|
biimpi |
|
| 214 |
213
|
adantll |
|
| 215 |
115 142 159
|
3jca |
|
| 216 |
161 215
|
jca |
|
| 217 |
216
|
adantr |
|
| 218 |
202 203 204 205 206 207 208 209 210 10 11 214 217
|
mertenslem1 |
|
| 219 |
218
|
expr |
|
| 220 |
201 219
|
sylbid |
|
| 221 |
220
|
rexlimdva |
|
| 222 |
185 221
|
mpd |
|
| 223 |
222
|
ex |
|
| 224 |
11 223
|
biimtrrid |
|
| 225 |
224
|
expdimp |
|
| 226 |
87 225
|
sylbid |
|
| 227 |
226
|
rexlimdva |
|
| 228 |
28 227
|
mpd |
|