Step |
Hyp |
Ref |
Expression |
1 |
|
mertens.1 |
|
2 |
|
mertens.2 |
|
3 |
|
mertens.3 |
|
4 |
|
mertens.4 |
|
5 |
|
mertens.5 |
|
6 |
|
mertens.6 |
|
7 |
|
mertens.7 |
|
8 |
|
mertens.8 |
|
9 |
|
mertens.9 |
|
10 |
|
mertens.10 |
|
11 |
|
mertens.11 |
|
12 |
|
nnuz |
|
13 |
|
1zzd |
|
14 |
9
|
rphalfcld |
|
15 |
|
nn0uz |
|
16 |
|
0zd |
|
17 |
|
eqidd |
|
18 |
3
|
abscld |
|
19 |
2 18
|
eqeltrd |
|
20 |
15 16 17 19 7
|
isumrecl |
|
21 |
3
|
absge0d |
|
22 |
21 2
|
breqtrrd |
|
23 |
15 16 17 19 7 22
|
isumge0 |
|
24 |
20 23
|
ge0p1rpd |
|
25 |
14 24
|
rpdivcld |
|
26 |
|
eqidd |
|
27 |
15 16 4 5 8
|
isumclim2 |
|
28 |
12 13 25 26 27
|
climi2 |
|
29 |
|
eluznn |
|
30 |
4 5
|
eqeltrd |
|
31 |
15 16 30
|
serf |
|
32 |
|
nnnn0 |
|
33 |
|
ffvelrn |
|
34 |
31 32 33
|
syl2an |
|
35 |
15 16 4 5 8
|
isumcl |
|
36 |
35
|
adantr |
|
37 |
34 36
|
abssubd |
|
38 |
|
eqid |
|
39 |
32
|
adantl |
|
40 |
|
peano2nn0 |
|
41 |
39 40
|
syl |
|
42 |
41
|
nn0zd |
|
43 |
|
simpll |
|
44 |
|
eluznn0 |
|
45 |
41 44
|
sylan |
|
46 |
43 45 4
|
syl2anc |
|
47 |
43 45 5
|
syl2anc |
|
48 |
8
|
adantr |
|
49 |
30
|
adantlr |
|
50 |
15 41 49
|
iserex |
|
51 |
48 50
|
mpbid |
|
52 |
38 42 46 47 51
|
isumcl |
|
53 |
34 52
|
pncan2d |
|
54 |
4
|
adantlr |
|
55 |
5
|
adantlr |
|
56 |
15 38 41 54 55 48
|
isumsplit |
|
57 |
|
nncn |
|
58 |
57
|
adantl |
|
59 |
|
ax-1cn |
|
60 |
|
pncan |
|
61 |
58 59 60
|
sylancl |
|
62 |
61
|
oveq2d |
|
63 |
62
|
sumeq1d |
|
64 |
|
simpl |
|
65 |
|
elfznn0 |
|
66 |
64 65 4
|
syl2an |
|
67 |
39 15
|
eleqtrdi |
|
68 |
64 65 5
|
syl2an |
|
69 |
66 67 68
|
fsumser |
|
70 |
63 69
|
eqtrd |
|
71 |
70
|
oveq1d |
|
72 |
56 71
|
eqtrd |
|
73 |
72
|
oveq1d |
|
74 |
46
|
sumeq2dv |
|
75 |
53 73 74
|
3eqtr4d |
|
76 |
75
|
fveq2d |
|
77 |
37 76
|
eqtrd |
|
78 |
77
|
breq1d |
|
79 |
29 78
|
sylan2 |
|
80 |
79
|
anassrs |
|
81 |
80
|
ralbidva |
|
82 |
|
fvoveq1 |
|
83 |
82
|
sumeq1d |
|
84 |
83
|
fveq2d |
|
85 |
84
|
breq1d |
|
86 |
85
|
cbvralvw |
|
87 |
81 86
|
bitrdi |
|
88 |
|
0zd |
|
89 |
14
|
adantr |
|
90 |
11
|
simplbi |
|
91 |
90
|
adantl |
|
92 |
91
|
nnrpd |
|
93 |
89 92
|
rpdivcld |
|
94 |
|
eqid |
|
95 |
|
elfznn0 |
|
96 |
95
|
adantl |
|
97 |
|
peano2nn0 |
|
98 |
96 97
|
syl |
|
99 |
98
|
nn0zd |
|
100 |
|
eqidd |
|
101 |
|
simplll |
|
102 |
|
eluznn0 |
|
103 |
98 102
|
sylan |
|
104 |
101 103 30
|
syl2anc |
|
105 |
8
|
ad2antrr |
|
106 |
30
|
ad4ant14 |
|
107 |
15 98 106
|
iserex |
|
108 |
105 107
|
mpbid |
|
109 |
94 99 100 104 108
|
isumcl |
|
110 |
109
|
abscld |
|
111 |
|
eleq1a |
|
112 |
110 111
|
syl |
|
113 |
112
|
rexlimdva |
|
114 |
113
|
abssdv |
|
115 |
10 114
|
eqsstrid |
|
116 |
|
fzfid |
|
117 |
|
abrexfi |
|
118 |
116 117
|
syl |
|
119 |
10 118
|
eqeltrid |
|
120 |
|
nnm1nn0 |
|
121 |
91 120
|
syl |
|
122 |
121 15
|
eleqtrdi |
|
123 |
|
eluzfz1 |
|
124 |
122 123
|
syl |
|
125 |
|
nnnn0 |
|
126 |
125 4
|
sylan2 |
|
127 |
126
|
sumeq2dv |
|
128 |
127
|
adantr |
|
129 |
128
|
fveq2d |
|
130 |
129
|
eqcomd |
|
131 |
|
fv0p1e1 |
|
132 |
131 12
|
eqtr4di |
|
133 |
132
|
sumeq1d |
|
134 |
133
|
fveq2d |
|
135 |
134
|
rspceeqv |
|
136 |
124 130 135
|
syl2anc |
|
137 |
|
fvex |
|
138 |
|
eqeq1 |
|
139 |
138
|
rexbidv |
|
140 |
137 139 10
|
elab2 |
|
141 |
136 140
|
sylibr |
|
142 |
141
|
ne0d |
|
143 |
|
ltso |
|
144 |
|
fisupcl |
|
145 |
143 144
|
mpan |
|
146 |
119 142 115 145
|
syl3anc |
|
147 |
115 146
|
sseldd |
|
148 |
|
0red |
|
149 |
125 5
|
sylan2 |
|
150 |
|
1nn0 |
|
151 |
150
|
a1i |
|
152 |
15 151 30
|
iserex |
|
153 |
8 152
|
mpbid |
|
154 |
12 13 126 149 153
|
isumcl |
|
155 |
154
|
adantr |
|
156 |
155
|
abscld |
|
157 |
155
|
absge0d |
|
158 |
|
fimaxre2 |
|
159 |
115 119 158
|
syl2anc |
|
160 |
115 142 159 141
|
suprubd |
|
161 |
148 156 147 157 160
|
letrd |
|
162 |
147 161
|
ge0p1rpd |
|
163 |
93 162
|
rpdivcld |
|
164 |
|
fveq2 |
|
165 |
|
eqid |
|
166 |
|
fvex |
|
167 |
164 165 166
|
fvmpt |
|
168 |
167
|
adantl |
|
169 |
|
nn0ex |
|
170 |
169
|
mptex |
|
171 |
170
|
a1i |
|
172 |
|
elnn0uz |
|
173 |
|
fveq2 |
|
174 |
|
fvex |
|
175 |
173 165 174
|
fvmpt |
|
176 |
175
|
adantl |
|
177 |
172 176
|
sylan2br |
|
178 |
16 177
|
seqfeq |
|
179 |
178 7
|
eqeltrd |
|
180 |
176 2
|
eqtrd |
|
181 |
180 18
|
eqeltrd |
|
182 |
181
|
recnd |
|
183 |
15 16 171 179 182
|
serf0 |
|
184 |
183
|
adantr |
|
185 |
15 88 163 168 184
|
climi0 |
|
186 |
|
simplll |
|
187 |
|
eluznn0 |
|
188 |
187
|
adantll |
|
189 |
19 22
|
absidd |
|
190 |
189
|
ralrimiva |
|
191 |
|
fveq2 |
|
192 |
191
|
fveq2d |
|
193 |
192 191
|
eqeq12d |
|
194 |
193
|
rspccva |
|
195 |
190 194
|
sylan |
|
196 |
186 188 195
|
syl2anc |
|
197 |
196
|
breq1d |
|
198 |
197
|
ralbidva |
|
199 |
164
|
breq1d |
|
200 |
199
|
cbvralvw |
|
201 |
198 200
|
bitr4di |
|
202 |
1
|
ad4ant14 |
|
203 |
2
|
ad4ant14 |
|
204 |
3
|
ad4ant14 |
|
205 |
4
|
ad4ant14 |
|
206 |
5
|
ad4ant14 |
|
207 |
6
|
ad4ant14 |
|
208 |
7
|
ad2antrr |
|
209 |
8
|
ad2antrr |
|
210 |
9
|
ad2antrr |
|
211 |
200
|
anbi2i |
|
212 |
211
|
anbi2i |
|
213 |
212
|
biimpi |
|
214 |
213
|
adantll |
|
215 |
115 142 159
|
3jca |
|
216 |
161 215
|
jca |
|
217 |
216
|
adantr |
|
218 |
202 203 204 205 206 207 208 209 210 10 11 214 217
|
mertenslem1 |
|
219 |
218
|
expr |
|
220 |
201 219
|
sylbid |
|
221 |
220
|
rexlimdva |
|
222 |
185 221
|
mpd |
|
223 |
222
|
ex |
|
224 |
11 223
|
syl5bir |
|
225 |
224
|
expdimp |
|
226 |
87 225
|
sylbid |
|
227 |
226
|
rexlimdva |
|
228 |
28 227
|
mpd |
|