Metamath Proof Explorer


Theorem mertenslem2

Description: Lemma for mertens . (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses mertens.1 φ j 0 F j = A
mertens.2 φ j 0 K j = A
mertens.3 φ j 0 A
mertens.4 φ k 0 G k = B
mertens.5 φ k 0 B
mertens.6 φ k 0 H k = j = 0 k A G k j
mertens.7 φ seq 0 + K dom
mertens.8 φ seq 0 + G dom
mertens.9 φ E +
mertens.10 T = z | n 0 s 1 z = k n + 1 G k
mertens.11 ψ s n s k n + 1 G k < E 2 j 0 K j + 1
Assertion mertenslem2 φ y 0 m y j = 0 m A k m - j + 1 B < E

Proof

Step Hyp Ref Expression
1 mertens.1 φ j 0 F j = A
2 mertens.2 φ j 0 K j = A
3 mertens.3 φ j 0 A
4 mertens.4 φ k 0 G k = B
5 mertens.5 φ k 0 B
6 mertens.6 φ k 0 H k = j = 0 k A G k j
7 mertens.7 φ seq 0 + K dom
8 mertens.8 φ seq 0 + G dom
9 mertens.9 φ E +
10 mertens.10 T = z | n 0 s 1 z = k n + 1 G k
11 mertens.11 ψ s n s k n + 1 G k < E 2 j 0 K j + 1
12 nnuz = 1
13 1zzd φ 1
14 9 rphalfcld φ E 2 +
15 nn0uz 0 = 0
16 0zd φ 0
17 eqidd φ j 0 K j = K j
18 3 abscld φ j 0 A
19 2 18 eqeltrd φ j 0 K j
20 15 16 17 19 7 isumrecl φ j 0 K j
21 3 absge0d φ j 0 0 A
22 21 2 breqtrrd φ j 0 0 K j
23 15 16 17 19 7 22 isumge0 φ 0 j 0 K j
24 20 23 ge0p1rpd φ j 0 K j + 1 +
25 14 24 rpdivcld φ E 2 j 0 K j + 1 +
26 eqidd φ m seq 0 + G m = seq 0 + G m
27 15 16 4 5 8 isumclim2 φ seq 0 + G k 0 B
28 12 13 25 26 27 climi2 φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1
29 eluznn s m s m
30 4 5 eqeltrd φ k 0 G k
31 15 16 30 serf φ seq 0 + G : 0
32 nnnn0 m m 0
33 ffvelrn seq 0 + G : 0 m 0 seq 0 + G m
34 31 32 33 syl2an φ m seq 0 + G m
35 15 16 4 5 8 isumcl φ k 0 B
36 35 adantr φ m k 0 B
37 34 36 abssubd φ m seq 0 + G m k 0 B = k 0 B seq 0 + G m
38 eqid m + 1 = m + 1
39 32 adantl φ m m 0
40 peano2nn0 m 0 m + 1 0
41 39 40 syl φ m m + 1 0
42 41 nn0zd φ m m + 1
43 simpll φ m k m + 1 φ
44 eluznn0 m + 1 0 k m + 1 k 0
45 41 44 sylan φ m k m + 1 k 0
46 43 45 4 syl2anc φ m k m + 1 G k = B
47 43 45 5 syl2anc φ m k m + 1 B
48 8 adantr φ m seq 0 + G dom
49 30 adantlr φ m k 0 G k
50 15 41 49 iserex φ m seq 0 + G dom seq m + 1 + G dom
51 48 50 mpbid φ m seq m + 1 + G dom
52 38 42 46 47 51 isumcl φ m k m + 1 B
53 34 52 pncan2d φ m seq 0 + G m + k m + 1 B - seq 0 + G m = k m + 1 B
54 4 adantlr φ m k 0 G k = B
55 5 adantlr φ m k 0 B
56 15 38 41 54 55 48 isumsplit φ m k 0 B = k = 0 m + 1 - 1 B + k m + 1 B
57 nncn m m
58 57 adantl φ m m
59 ax-1cn 1
60 pncan m 1 m + 1 - 1 = m
61 58 59 60 sylancl φ m m + 1 - 1 = m
62 61 oveq2d φ m 0 m + 1 - 1 = 0 m
63 62 sumeq1d φ m k = 0 m + 1 - 1 B = k = 0 m B
64 simpl φ m φ
65 elfznn0 k 0 m k 0
66 64 65 4 syl2an φ m k 0 m G k = B
67 39 15 eleqtrdi φ m m 0
68 64 65 5 syl2an φ m k 0 m B
69 66 67 68 fsumser φ m k = 0 m B = seq 0 + G m
70 63 69 eqtrd φ m k = 0 m + 1 - 1 B = seq 0 + G m
71 70 oveq1d φ m k = 0 m + 1 - 1 B + k m + 1 B = seq 0 + G m + k m + 1 B
72 56 71 eqtrd φ m k 0 B = seq 0 + G m + k m + 1 B
73 72 oveq1d φ m k 0 B seq 0 + G m = seq 0 + G m + k m + 1 B - seq 0 + G m
74 46 sumeq2dv φ m k m + 1 G k = k m + 1 B
75 53 73 74 3eqtr4d φ m k 0 B seq 0 + G m = k m + 1 G k
76 75 fveq2d φ m k 0 B seq 0 + G m = k m + 1 G k
77 37 76 eqtrd φ m seq 0 + G m k 0 B = k m + 1 G k
78 77 breq1d φ m seq 0 + G m k 0 B < E 2 j 0 K j + 1 k m + 1 G k < E 2 j 0 K j + 1
79 29 78 sylan2 φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 k m + 1 G k < E 2 j 0 K j + 1
80 79 anassrs φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 k m + 1 G k < E 2 j 0 K j + 1
81 80 ralbidva φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 m s k m + 1 G k < E 2 j 0 K j + 1
82 fvoveq1 m = n m + 1 = n + 1
83 82 sumeq1d m = n k m + 1 G k = k n + 1 G k
84 83 fveq2d m = n k m + 1 G k = k n + 1 G k
85 84 breq1d m = n k m + 1 G k < E 2 j 0 K j + 1 k n + 1 G k < E 2 j 0 K j + 1
86 85 cbvralvw m s k m + 1 G k < E 2 j 0 K j + 1 n s k n + 1 G k < E 2 j 0 K j + 1
87 81 86 bitrdi φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 n s k n + 1 G k < E 2 j 0 K j + 1
88 0zd φ ψ 0
89 14 adantr φ ψ E 2 +
90 11 simplbi ψ s
91 90 adantl φ ψ s
92 91 nnrpd φ ψ s +
93 89 92 rpdivcld φ ψ E 2 s +
94 eqid n + 1 = n + 1
95 elfznn0 n 0 s 1 n 0
96 95 adantl φ ψ n 0 s 1 n 0
97 peano2nn0 n 0 n + 1 0
98 96 97 syl φ ψ n 0 s 1 n + 1 0
99 98 nn0zd φ ψ n 0 s 1 n + 1
100 eqidd φ ψ n 0 s 1 k n + 1 G k = G k
101 simplll φ ψ n 0 s 1 k n + 1 φ
102 eluznn0 n + 1 0 k n + 1 k 0
103 98 102 sylan φ ψ n 0 s 1 k n + 1 k 0
104 101 103 30 syl2anc φ ψ n 0 s 1 k n + 1 G k
105 8 ad2antrr φ ψ n 0 s 1 seq 0 + G dom
106 30 ad4ant14 φ ψ n 0 s 1 k 0 G k
107 15 98 106 iserex φ ψ n 0 s 1 seq 0 + G dom seq n + 1 + G dom
108 105 107 mpbid φ ψ n 0 s 1 seq n + 1 + G dom
109 94 99 100 104 108 isumcl φ ψ n 0 s 1 k n + 1 G k
110 109 abscld φ ψ n 0 s 1 k n + 1 G k
111 eleq1a k n + 1 G k z = k n + 1 G k z
112 110 111 syl φ ψ n 0 s 1 z = k n + 1 G k z
113 112 rexlimdva φ ψ n 0 s 1 z = k n + 1 G k z
114 113 abssdv φ ψ z | n 0 s 1 z = k n + 1 G k
115 10 114 eqsstrid φ ψ T
116 fzfid φ ψ 0 s 1 Fin
117 abrexfi 0 s 1 Fin z | n 0 s 1 z = k n + 1 G k Fin
118 116 117 syl φ ψ z | n 0 s 1 z = k n + 1 G k Fin
119 10 118 eqeltrid φ ψ T Fin
120 nnm1nn0 s s 1 0
121 91 120 syl φ ψ s 1 0
122 121 15 eleqtrdi φ ψ s 1 0
123 eluzfz1 s 1 0 0 0 s 1
124 122 123 syl φ ψ 0 0 s 1
125 nnnn0 k k 0
126 125 4 sylan2 φ k G k = B
127 126 sumeq2dv φ k G k = k B
128 127 adantr φ ψ k G k = k B
129 128 fveq2d φ ψ k G k = k B
130 129 eqcomd φ ψ k B = k G k
131 fv0p1e1 n = 0 n + 1 = 1
132 131 12 eqtr4di n = 0 n + 1 =
133 132 sumeq1d n = 0 k n + 1 G k = k G k
134 133 fveq2d n = 0 k n + 1 G k = k G k
135 134 rspceeqv 0 0 s 1 k B = k G k n 0 s 1 k B = k n + 1 G k
136 124 130 135 syl2anc φ ψ n 0 s 1 k B = k n + 1 G k
137 fvex k B V
138 eqeq1 z = k B z = k n + 1 G k k B = k n + 1 G k
139 138 rexbidv z = k B n 0 s 1 z = k n + 1 G k n 0 s 1 k B = k n + 1 G k
140 137 139 10 elab2 k B T n 0 s 1 k B = k n + 1 G k
141 136 140 sylibr φ ψ k B T
142 141 ne0d φ ψ T
143 ltso < Or
144 fisupcl < Or T Fin T T sup T < T
145 143 144 mpan T Fin T T sup T < T
146 119 142 115 145 syl3anc φ ψ sup T < T
147 115 146 sseldd φ ψ sup T <
148 0red φ ψ 0
149 125 5 sylan2 φ k B
150 1nn0 1 0
151 150 a1i φ 1 0
152 15 151 30 iserex φ seq 0 + G dom seq 1 + G dom
153 8 152 mpbid φ seq 1 + G dom
154 12 13 126 149 153 isumcl φ k B
155 154 adantr φ ψ k B
156 155 abscld φ ψ k B
157 155 absge0d φ ψ 0 k B
158 fimaxre2 T T Fin z w T w z
159 115 119 158 syl2anc φ ψ z w T w z
160 115 142 159 141 suprubd φ ψ k B sup T <
161 148 156 147 157 160 letrd φ ψ 0 sup T <
162 147 161 ge0p1rpd φ ψ sup T < + 1 +
163 93 162 rpdivcld φ ψ E 2 s sup T < + 1 +
164 fveq2 n = m K n = K m
165 eqid n 0 K n = n 0 K n
166 fvex K m V
167 164 165 166 fvmpt m 0 n 0 K n m = K m
168 167 adantl φ ψ m 0 n 0 K n m = K m
169 nn0ex 0 V
170 169 mptex n 0 K n V
171 170 a1i φ n 0 K n V
172 elnn0uz j 0 j 0
173 fveq2 n = j K n = K j
174 fvex K j V
175 173 165 174 fvmpt j 0 n 0 K n j = K j
176 175 adantl φ j 0 n 0 K n j = K j
177 172 176 sylan2br φ j 0 n 0 K n j = K j
178 16 177 seqfeq φ seq 0 + n 0 K n = seq 0 + K
179 178 7 eqeltrd φ seq 0 + n 0 K n dom
180 176 2 eqtrd φ j 0 n 0 K n j = A
181 180 18 eqeltrd φ j 0 n 0 K n j
182 181 recnd φ j 0 n 0 K n j
183 15 16 171 179 182 serf0 φ n 0 K n 0
184 183 adantr φ ψ n 0 K n 0
185 15 88 163 168 184 climi0 φ ψ t 0 m t K m < E 2 s sup T < + 1
186 simplll φ ψ t 0 m t φ
187 eluznn0 t 0 m t m 0
188 187 adantll φ ψ t 0 m t m 0
189 19 22 absidd φ j 0 K j = K j
190 189 ralrimiva φ j 0 K j = K j
191 fveq2 j = m K j = K m
192 191 fveq2d j = m K j = K m
193 192 191 eqeq12d j = m K j = K j K m = K m
194 193 rspccva j 0 K j = K j m 0 K m = K m
195 190 194 sylan φ m 0 K m = K m
196 186 188 195 syl2anc φ ψ t 0 m t K m = K m
197 196 breq1d φ ψ t 0 m t K m < E 2 s sup T < + 1 K m < E 2 s sup T < + 1
198 197 ralbidva φ ψ t 0 m t K m < E 2 s sup T < + 1 m t K m < E 2 s sup T < + 1
199 164 breq1d n = m K n < E 2 s sup T < + 1 K m < E 2 s sup T < + 1
200 199 cbvralvw n t K n < E 2 s sup T < + 1 m t K m < E 2 s sup T < + 1
201 198 200 bitr4di φ ψ t 0 m t K m < E 2 s sup T < + 1 n t K n < E 2 s sup T < + 1
202 1 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 j 0 F j = A
203 2 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 j 0 K j = A
204 3 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 j 0 A
205 4 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 k 0 G k = B
206 5 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 k 0 B
207 6 ad4ant14 φ ψ t 0 n t K n < E 2 s sup T < + 1 k 0 H k = j = 0 k A G k j
208 7 ad2antrr φ ψ t 0 n t K n < E 2 s sup T < + 1 seq 0 + K dom
209 8 ad2antrr φ ψ t 0 n t K n < E 2 s sup T < + 1 seq 0 + G dom
210 9 ad2antrr φ ψ t 0 n t K n < E 2 s sup T < + 1 E +
211 200 anbi2i t 0 n t K n < E 2 s sup T < + 1 t 0 m t K m < E 2 s sup T < + 1
212 211 anbi2i ψ t 0 n t K n < E 2 s sup T < + 1 ψ t 0 m t K m < E 2 s sup T < + 1
213 212 biimpi ψ t 0 n t K n < E 2 s sup T < + 1 ψ t 0 m t K m < E 2 s sup T < + 1
214 213 adantll φ ψ t 0 n t K n < E 2 s sup T < + 1 ψ t 0 m t K m < E 2 s sup T < + 1
215 115 142 159 3jca φ ψ T T z w T w z
216 161 215 jca φ ψ 0 sup T < T T z w T w z
217 216 adantr φ ψ t 0 n t K n < E 2 s sup T < + 1 0 sup T < T T z w T w z
218 202 203 204 205 206 207 208 209 210 10 11 214 217 mertenslem1 φ ψ t 0 n t K n < E 2 s sup T < + 1 y 0 m y j = 0 m A k m - j + 1 B < E
219 218 expr φ ψ t 0 n t K n < E 2 s sup T < + 1 y 0 m y j = 0 m A k m - j + 1 B < E
220 201 219 sylbid φ ψ t 0 m t K m < E 2 s sup T < + 1 y 0 m y j = 0 m A k m - j + 1 B < E
221 220 rexlimdva φ ψ t 0 m t K m < E 2 s sup T < + 1 y 0 m y j = 0 m A k m - j + 1 B < E
222 185 221 mpd φ ψ y 0 m y j = 0 m A k m - j + 1 B < E
223 222 ex φ ψ y 0 m y j = 0 m A k m - j + 1 B < E
224 11 223 syl5bir φ s n s k n + 1 G k < E 2 j 0 K j + 1 y 0 m y j = 0 m A k m - j + 1 B < E
225 224 expdimp φ s n s k n + 1 G k < E 2 j 0 K j + 1 y 0 m y j = 0 m A k m - j + 1 B < E
226 87 225 sylbid φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 y 0 m y j = 0 m A k m - j + 1 B < E
227 226 rexlimdva φ s m s seq 0 + G m k 0 B < E 2 j 0 K j + 1 y 0 m y j = 0 m A k m - j + 1 B < E
228 28 227 mpd φ y 0 m y j = 0 m A k m - j + 1 B < E