Metamath Proof Explorer


Theorem met0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion met0 D Met X A X A D A = 0

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xmet0 D ∞Met X A X A D A = 0
3 1 2 sylan D Met X A X A D A = 0