Metamath Proof Explorer


Theorem met1stc

Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis methaus.1 J = MetOpen D
Assertion met1stc D ∞Met X J 1 st 𝜔

Proof

Step Hyp Ref Expression
1 methaus.1 J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 1 mopnuni D ∞Met X X = J
4 3 eleq2d D ∞Met X x X x J
5 4 biimpar D ∞Met X x J x X
6 simpll D ∞Met X x X n D ∞Met X
7 simplr D ∞Met X x X n x X
8 nnrp n n +
9 8 adantl D ∞Met X x X n n +
10 9 rpreccld D ∞Met X x X n 1 n +
11 10 rpxrd D ∞Met X x X n 1 n *
12 1 blopn D ∞Met X x X 1 n * x ball D 1 n J
13 6 7 11 12 syl3anc D ∞Met X x X n x ball D 1 n J
14 13 fmpttd D ∞Met X x X n x ball D 1 n : J
15 14 frnd D ∞Met X x X ran n x ball D 1 n J
16 nnex V
17 16 mptex n x ball D 1 n V
18 17 rnex ran n x ball D 1 n V
19 18 elpw ran n x ball D 1 n 𝒫 J ran n x ball D 1 n J
20 15 19 sylibr D ∞Met X x X ran n x ball D 1 n 𝒫 J
21 omelon ω On
22 nnenom ω
23 22 ensymi ω
24 isnumi ω On ω dom card
25 21 23 24 mp2an dom card
26 ovex x ball D 1 n V
27 eqid n x ball D 1 n = n x ball D 1 n
28 26 27 fnmpti n x ball D 1 n Fn
29 dffn4 n x ball D 1 n Fn n x ball D 1 n : onto ran n x ball D 1 n
30 28 29 mpbi n x ball D 1 n : onto ran n x ball D 1 n
31 fodomnum dom card n x ball D 1 n : onto ran n x ball D 1 n ran n x ball D 1 n
32 25 30 31 mp2 ran n x ball D 1 n
33 domentr ran n x ball D 1 n ω ran n x ball D 1 n ω
34 32 22 33 mp2an ran n x ball D 1 n ω
35 34 a1i D ∞Met X x X ran n x ball D 1 n ω
36 simpll D ∞Met X x X z J x z D ∞Met X
37 simprl D ∞Met X x X z J x z z J
38 simprr D ∞Met X x X z J x z x z
39 1 mopni2 D ∞Met X z J x z r + x ball D r z
40 36 37 38 39 syl3anc D ∞Met X x X z J x z r + x ball D r z
41 simp-4l D ∞Met X x X z J x z r + x ball D r z y 1 y < r D ∞Met X
42 simp-4r D ∞Met X x X z J x z r + x ball D r z y 1 y < r x X
43 simprl D ∞Met X x X z J x z r + x ball D r z y 1 y < r y
44 43 nnrpd D ∞Met X x X z J x z r + x ball D r z y 1 y < r y +
45 44 rpreccld D ∞Met X x X z J x z r + x ball D r z y 1 y < r 1 y +
46 blcntr D ∞Met X x X 1 y + x x ball D 1 y
47 41 42 45 46 syl3anc D ∞Met X x X z J x z r + x ball D r z y 1 y < r x x ball D 1 y
48 45 rpxrd D ∞Met X x X z J x z r + x ball D r z y 1 y < r 1 y *
49 simplrl D ∞Met X x X z J x z r + x ball D r z y 1 y < r r +
50 49 rpxrd D ∞Met X x X z J x z r + x ball D r z y 1 y < r r *
51 nnrecre y 1 y
52 51 ad2antrl D ∞Met X x X z J x z r + x ball D r z y 1 y < r 1 y
53 49 rpred D ∞Met X x X z J x z r + x ball D r z y 1 y < r r
54 simprr D ∞Met X x X z J x z r + x ball D r z y 1 y < r 1 y < r
55 52 53 54 ltled D ∞Met X x X z J x z r + x ball D r z y 1 y < r 1 y r
56 ssbl D ∞Met X x X 1 y * r * 1 y r x ball D 1 y x ball D r
57 41 42 48 50 55 56 syl221anc D ∞Met X x X z J x z r + x ball D r z y 1 y < r x ball D 1 y x ball D r
58 simplrr D ∞Met X x X z J x z r + x ball D r z y 1 y < r x ball D r z
59 57 58 sstrd D ∞Met X x X z J x z r + x ball D r z y 1 y < r x ball D 1 y z
60 47 59 jca D ∞Met X x X z J x z r + x ball D r z y 1 y < r x x ball D 1 y x ball D 1 y z
61 elrp r + r 0 < r
62 nnrecl r 0 < r y 1 y < r
63 61 62 sylbi r + y 1 y < r
64 63 ad2antrl D ∞Met X x X z J x z r + x ball D r z y 1 y < r
65 60 64 reximddv D ∞Met X x X z J x z r + x ball D r z y x x ball D 1 y x ball D 1 y z
66 40 65 rexlimddv D ∞Met X x X z J x z y x x ball D 1 y x ball D 1 y z
67 ovexd D ∞Met X x X z J x z y x ball D 1 y V
68 vex w V
69 oveq2 n = y 1 n = 1 y
70 69 oveq2d n = y x ball D 1 n = x ball D 1 y
71 70 cbvmptv n x ball D 1 n = y x ball D 1 y
72 71 elrnmpt w V w ran n x ball D 1 n y w = x ball D 1 y
73 68 72 mp1i D ∞Met X x X z J x z w ran n x ball D 1 n y w = x ball D 1 y
74 eleq2 w = x ball D 1 y x w x x ball D 1 y
75 sseq1 w = x ball D 1 y w z x ball D 1 y z
76 74 75 anbi12d w = x ball D 1 y x w w z x x ball D 1 y x ball D 1 y z
77 76 adantl D ∞Met X x X z J x z w = x ball D 1 y x w w z x x ball D 1 y x ball D 1 y z
78 67 73 77 rexxfr2d D ∞Met X x X z J x z w ran n x ball D 1 n x w w z y x x ball D 1 y x ball D 1 y z
79 66 78 mpbird D ∞Met X x X z J x z w ran n x ball D 1 n x w w z
80 79 expr D ∞Met X x X z J x z w ran n x ball D 1 n x w w z
81 80 ralrimiva D ∞Met X x X z J x z w ran n x ball D 1 n x w w z
82 breq1 y = ran n x ball D 1 n y ω ran n x ball D 1 n ω
83 rexeq y = ran n x ball D 1 n w y x w w z w ran n x ball D 1 n x w w z
84 83 imbi2d y = ran n x ball D 1 n x z w y x w w z x z w ran n x ball D 1 n x w w z
85 84 ralbidv y = ran n x ball D 1 n z J x z w y x w w z z J x z w ran n x ball D 1 n x w w z
86 82 85 anbi12d y = ran n x ball D 1 n y ω z J x z w y x w w z ran n x ball D 1 n ω z J x z w ran n x ball D 1 n x w w z
87 86 rspcev ran n x ball D 1 n 𝒫 J ran n x ball D 1 n ω z J x z w ran n x ball D 1 n x w w z y 𝒫 J y ω z J x z w y x w w z
88 20 35 81 87 syl12anc D ∞Met X x X y 𝒫 J y ω z J x z w y x w w z
89 5 88 syldan D ∞Met X x J y 𝒫 J y ω z J x z w y x w w z
90 89 ralrimiva D ∞Met X x J y 𝒫 J y ω z J x z w y x w w z
91 eqid J = J
92 91 is1stc2 J 1 st 𝜔 J Top x J y 𝒫 J y ω z J x z w y x w w z
93 2 90 92 sylanbrc D ∞Met X J 1 st 𝜔