Step |
Hyp |
Ref |
Expression |
1 |
|
methaus.1 |
|
2 |
1
|
mopntop |
|
3 |
1
|
mopnuni |
|
4 |
3
|
eleq2d |
|
5 |
4
|
biimpar |
|
6 |
|
simpll |
|
7 |
|
simplr |
|
8 |
|
nnrp |
|
9 |
8
|
adantl |
|
10 |
9
|
rpreccld |
|
11 |
10
|
rpxrd |
|
12 |
1
|
blopn |
|
13 |
6 7 11 12
|
syl3anc |
|
14 |
13
|
fmpttd |
|
15 |
14
|
frnd |
|
16 |
|
nnex |
|
17 |
16
|
mptex |
|
18 |
17
|
rnex |
|
19 |
18
|
elpw |
|
20 |
15 19
|
sylibr |
|
21 |
|
omelon |
|
22 |
|
nnenom |
|
23 |
22
|
ensymi |
|
24 |
|
isnumi |
|
25 |
21 23 24
|
mp2an |
|
26 |
|
ovex |
|
27 |
|
eqid |
|
28 |
26 27
|
fnmpti |
|
29 |
|
dffn4 |
|
30 |
28 29
|
mpbi |
|
31 |
|
fodomnum |
|
32 |
25 30 31
|
mp2 |
|
33 |
|
domentr |
|
34 |
32 22 33
|
mp2an |
|
35 |
34
|
a1i |
|
36 |
|
simpll |
|
37 |
|
simprl |
|
38 |
|
simprr |
|
39 |
1
|
mopni2 |
|
40 |
36 37 38 39
|
syl3anc |
|
41 |
|
simp-4l |
|
42 |
|
simp-4r |
|
43 |
|
simprl |
|
44 |
43
|
nnrpd |
|
45 |
44
|
rpreccld |
|
46 |
|
blcntr |
|
47 |
41 42 45 46
|
syl3anc |
|
48 |
45
|
rpxrd |
|
49 |
|
simplrl |
|
50 |
49
|
rpxrd |
|
51 |
|
nnrecre |
|
52 |
51
|
ad2antrl |
|
53 |
49
|
rpred |
|
54 |
|
simprr |
|
55 |
52 53 54
|
ltled |
|
56 |
|
ssbl |
|
57 |
41 42 48 50 55 56
|
syl221anc |
|
58 |
|
simplrr |
|
59 |
57 58
|
sstrd |
|
60 |
47 59
|
jca |
|
61 |
|
elrp |
|
62 |
|
nnrecl |
|
63 |
61 62
|
sylbi |
|
64 |
63
|
ad2antrl |
|
65 |
60 64
|
reximddv |
|
66 |
40 65
|
rexlimddv |
|
67 |
|
ovexd |
|
68 |
|
vex |
|
69 |
|
oveq2 |
|
70 |
69
|
oveq2d |
|
71 |
70
|
cbvmptv |
|
72 |
71
|
elrnmpt |
|
73 |
68 72
|
mp1i |
|
74 |
|
eleq2 |
|
75 |
|
sseq1 |
|
76 |
74 75
|
anbi12d |
|
77 |
76
|
adantl |
|
78 |
67 73 77
|
rexxfr2d |
|
79 |
66 78
|
mpbird |
|
80 |
79
|
expr |
|
81 |
80
|
ralrimiva |
|
82 |
|
breq1 |
|
83 |
|
rexeq |
|
84 |
83
|
imbi2d |
|
85 |
84
|
ralbidv |
|
86 |
82 85
|
anbi12d |
|
87 |
86
|
rspcev |
|
88 |
20 35 81 87
|
syl12anc |
|
89 |
5 88
|
syldan |
|
90 |
89
|
ralrimiva |
|
91 |
|
eqid |
|
92 |
91
|
is1stc2 |
|
93 |
2 90 92
|
sylanbrc |
|