Metamath Proof Explorer


Theorem met2ndci

Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis methaus.1 J = MetOpen D
Assertion met2ndci D ∞Met X A X A ω cls J A = X J 2 nd 𝜔

Proof

Step Hyp Ref Expression
1 methaus.1 J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 2 adantr D ∞Met X A X A ω cls J A = X J Top
4 simpll D ∞Met X A X A ω cls J A = X x y A D ∞Met X
5 simplr1 D ∞Met X A X A ω cls J A = X x y A A X
6 simprr D ∞Met X A X A ω cls J A = X x y A y A
7 5 6 sseldd D ∞Met X A X A ω cls J A = X x y A y X
8 simprl D ∞Met X A X A ω cls J A = X x y A x
9 8 nnrpd D ∞Met X A X A ω cls J A = X x y A x +
10 9 rpreccld D ∞Met X A X A ω cls J A = X x y A 1 x +
11 10 rpxrd D ∞Met X A X A ω cls J A = X x y A 1 x *
12 1 blopn D ∞Met X y X 1 x * y ball D 1 x J
13 4 7 11 12 syl3anc D ∞Met X A X A ω cls J A = X x y A y ball D 1 x J
14 13 ralrimivva D ∞Met X A X A ω cls J A = X x y A y ball D 1 x J
15 eqid x , y A y ball D 1 x = x , y A y ball D 1 x
16 15 fmpo x y A y ball D 1 x J x , y A y ball D 1 x : × A J
17 14 16 sylib D ∞Met X A X A ω cls J A = X x , y A y ball D 1 x : × A J
18 17 frnd D ∞Met X A X A ω cls J A = X ran x , y A y ball D 1 x J
19 simpll D ∞Met X A X A ω cls J A = X u J z u D ∞Met X
20 simprl D ∞Met X A X A ω cls J A = X u J z u u J
21 simprr D ∞Met X A X A ω cls J A = X u J z u z u
22 1 mopni2 D ∞Met X u J z u r + z ball D r u
23 19 20 21 22 syl3anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u
24 simprl D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u r +
25 24 rphalfcld D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u r 2 +
26 elrp r 2 + r 2 0 < r 2
27 nnrecl r 2 0 < r 2 n 1 n < r 2
28 26 27 sylbi r 2 + n 1 n < r 2
29 25 28 syl D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2
30 3 ad2antrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 J Top
31 simpr1 D ∞Met X A X A ω cls J A = X A X
32 31 ad2antrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 A X
33 1 mopnuni D ∞Met X X = J
34 33 ad3antrrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 X = J
35 32 34 sseqtrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 A J
36 simplrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z u
37 simplrl D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 u J
38 elunii z u u J z J
39 36 37 38 syl2anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z J
40 39 34 eleqtrrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z X
41 simpr3 D ∞Met X A X A ω cls J A = X cls J A = X
42 41 ad2antrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 cls J A = X
43 40 42 eleqtrrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z cls J A
44 19 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 D ∞Met X
45 simprrl D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 n
46 45 nnrpd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 n +
47 46 rpreccld D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 1 n +
48 47 rpxrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 1 n *
49 1 blopn D ∞Met X z X 1 n * z ball D 1 n J
50 44 40 48 49 syl3anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z ball D 1 n J
51 blcntr D ∞Met X z X 1 n + z z ball D 1 n
52 44 40 47 51 syl3anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z z ball D 1 n
53 eqid J = J
54 53 clsndisj J Top A J z cls J A z ball D 1 n J z z ball D 1 n z ball D 1 n A
55 30 35 43 50 52 54 syl32anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z ball D 1 n A
56 n0 z ball D 1 n A t t z ball D 1 n A
57 55 56 sylib D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t t z ball D 1 n A
58 45 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A n
59 simpr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t z ball D 1 n A
60 59 elin2d D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t A
61 eqidd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D 1 n = t ball D 1 n
62 oveq2 x = n 1 x = 1 n
63 62 oveq2d x = n y ball D 1 x = y ball D 1 n
64 63 eqeq2d x = n t ball D 1 n = y ball D 1 x t ball D 1 n = y ball D 1 n
65 oveq1 y = t y ball D 1 n = t ball D 1 n
66 65 eqeq2d y = t t ball D 1 n = y ball D 1 n t ball D 1 n = t ball D 1 n
67 64 66 rspc2ev n t A t ball D 1 n = t ball D 1 n x y A t ball D 1 n = y ball D 1 x
68 58 60 61 67 syl3anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A x y A t ball D 1 n = y ball D 1 x
69 ovex t ball D 1 n V
70 eqeq1 z = t ball D 1 n z = y ball D 1 x t ball D 1 n = y ball D 1 x
71 70 2rexbidv z = t ball D 1 n x y A z = y ball D 1 x x y A t ball D 1 n = y ball D 1 x
72 15 rnmpo ran x , y A y ball D 1 x = z | x y A z = y ball D 1 x
73 69 71 72 elab2 t ball D 1 n ran x , y A y ball D 1 x x y A t ball D 1 n = y ball D 1 x
74 68 73 sylibr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D 1 n ran x , y A y ball D 1 x
75 59 elin1d D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t z ball D 1 n
76 44 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A D ∞Met X
77 48 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A 1 n *
78 40 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A z X
79 32 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A A X
80 79 60 sseldd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t X
81 blcom D ∞Met X 1 n * z X t X t z ball D 1 n z t ball D 1 n
82 76 77 78 80 81 syl22anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t z ball D 1 n z t ball D 1 n
83 75 82 mpbid D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A z t ball D 1 n
84 simprll D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 r +
85 84 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A r +
86 85 rphalfcld D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A r 2 +
87 86 rpxrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A r 2 *
88 simprrr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 1 n < r 2
89 84 rphalfcld D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 r 2 +
90 rpre 1 n + 1 n
91 rpre r 2 + r 2
92 ltle 1 n r 2 1 n < r 2 1 n r 2
93 90 91 92 syl2an 1 n + r 2 + 1 n < r 2 1 n r 2
94 47 89 93 syl2anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 1 n < r 2 1 n r 2
95 88 94 mpd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 1 n r 2
96 95 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A 1 n r 2
97 ssbl D ∞Met X t X 1 n * r 2 * 1 n r 2 t ball D 1 n t ball D r 2
98 76 80 77 87 96 97 syl221anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D 1 n t ball D r 2
99 85 rpred D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A r
100 98 83 sseldd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A z t ball D r 2
101 blhalf D ∞Met X t X r z t ball D r 2 t ball D r 2 z ball D r
102 76 80 99 100 101 syl22anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D r 2 z ball D r
103 simprlr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 z ball D r u
104 103 adantr D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A z ball D r u
105 102 104 sstrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D r 2 u
106 98 105 sstrd D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A t ball D 1 n u
107 eleq2 w = t ball D 1 n z w z t ball D 1 n
108 sseq1 w = t ball D 1 n w u t ball D 1 n u
109 107 108 anbi12d w = t ball D 1 n z w w u z t ball D 1 n t ball D 1 n u
110 109 rspcev t ball D 1 n ran x , y A y ball D 1 x z t ball D 1 n t ball D 1 n u w ran x , y A y ball D 1 x z w w u
111 74 83 106 110 syl12anc D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 t z ball D 1 n A w ran x , y A y ball D 1 x z w w u
112 57 111 exlimddv D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 w ran x , y A y ball D 1 x z w w u
113 112 anassrs D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u n 1 n < r 2 w ran x , y A y ball D 1 x z w w u
114 29 113 rexlimddv D ∞Met X A X A ω cls J A = X u J z u r + z ball D r u w ran x , y A y ball D 1 x z w w u
115 23 114 rexlimddv D ∞Met X A X A ω cls J A = X u J z u w ran x , y A y ball D 1 x z w w u
116 115 ralrimivva D ∞Met X A X A ω cls J A = X u J z u w ran x , y A y ball D 1 x z w w u
117 basgen2 J Top ran x , y A y ball D 1 x J u J z u w ran x , y A y ball D 1 x z w w u topGen ran x , y A y ball D 1 x = J
118 3 18 116 117 syl3anc D ∞Met X A X A ω cls J A = X topGen ran x , y A y ball D 1 x = J
119 118 3 eqeltrd D ∞Met X A X A ω cls J A = X topGen ran x , y A y ball D 1 x Top
120 tgclb ran x , y A y ball D 1 x TopBases topGen ran x , y A y ball D 1 x Top
121 119 120 sylibr D ∞Met X A X A ω cls J A = X ran x , y A y ball D 1 x TopBases
122 omelon ω On
123 simpr2 D ∞Met X A X A ω cls J A = X A ω
124 nnex V
125 124 xpdom2 A ω × A × ω
126 123 125 syl D ∞Met X A X A ω cls J A = X × A × ω
127 nnenom ω
128 omex ω V
129 128 enref ω ω
130 xpen ω ω ω × ω ω × ω
131 127 129 130 mp2an × ω ω × ω
132 xpomen ω × ω ω
133 131 132 entri × ω ω
134 domentr × A × ω × ω ω × A ω
135 126 133 134 sylancl D ∞Met X A X A ω cls J A = X × A ω
136 ondomen ω On × A ω × A dom card
137 122 135 136 sylancr D ∞Met X A X A ω cls J A = X × A dom card
138 17 ffnd D ∞Met X A X A ω cls J A = X x , y A y ball D 1 x Fn × A
139 dffn4 x , y A y ball D 1 x Fn × A x , y A y ball D 1 x : × A onto ran x , y A y ball D 1 x
140 138 139 sylib D ∞Met X A X A ω cls J A = X x , y A y ball D 1 x : × A onto ran x , y A y ball D 1 x
141 fodomnum × A dom card x , y A y ball D 1 x : × A onto ran x , y A y ball D 1 x ran x , y A y ball D 1 x × A
142 137 140 141 sylc D ∞Met X A X A ω cls J A = X ran x , y A y ball D 1 x × A
143 domtr ran x , y A y ball D 1 x × A × A ω ran x , y A y ball D 1 x ω
144 142 135 143 syl2anc D ∞Met X A X A ω cls J A = X ran x , y A y ball D 1 x ω
145 2ndci ran x , y A y ball D 1 x TopBases ran x , y A y ball D 1 x ω topGen ran x , y A y ball D 1 x 2 nd 𝜔
146 121 144 145 syl2anc D ∞Met X A X A ω cls J A = X topGen ran x , y A y ball D 1 x 2 nd 𝜔
147 118 146 eqeltrrd D ∞Met X A X A ω cls J A = X J 2 nd 𝜔