Step |
Hyp |
Ref |
Expression |
1 |
|
methaus.1 |
|
2 |
1
|
mopntop |
|
3 |
2
|
adantr |
|
4 |
|
simpll |
|
5 |
|
simplr1 |
|
6 |
|
simprr |
|
7 |
5 6
|
sseldd |
|
8 |
|
simprl |
|
9 |
8
|
nnrpd |
|
10 |
9
|
rpreccld |
|
11 |
10
|
rpxrd |
|
12 |
1
|
blopn |
|
13 |
4 7 11 12
|
syl3anc |
|
14 |
13
|
ralrimivva |
|
15 |
|
eqid |
|
16 |
15
|
fmpo |
|
17 |
14 16
|
sylib |
|
18 |
17
|
frnd |
|
19 |
|
simpll |
|
20 |
|
simprl |
|
21 |
|
simprr |
|
22 |
1
|
mopni2 |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
|
simprl |
|
25 |
24
|
rphalfcld |
|
26 |
|
elrp |
|
27 |
|
nnrecl |
|
28 |
26 27
|
sylbi |
|
29 |
25 28
|
syl |
|
30 |
3
|
ad2antrr |
|
31 |
|
simpr1 |
|
32 |
31
|
ad2antrr |
|
33 |
1
|
mopnuni |
|
34 |
33
|
ad3antrrr |
|
35 |
32 34
|
sseqtrd |
|
36 |
|
simplrr |
|
37 |
|
simplrl |
|
38 |
|
elunii |
|
39 |
36 37 38
|
syl2anc |
|
40 |
39 34
|
eleqtrrd |
|
41 |
|
simpr3 |
|
42 |
41
|
ad2antrr |
|
43 |
40 42
|
eleqtrrd |
|
44 |
19
|
adantr |
|
45 |
|
simprrl |
|
46 |
45
|
nnrpd |
|
47 |
46
|
rpreccld |
|
48 |
47
|
rpxrd |
|
49 |
1
|
blopn |
|
50 |
44 40 48 49
|
syl3anc |
|
51 |
|
blcntr |
|
52 |
44 40 47 51
|
syl3anc |
|
53 |
|
eqid |
|
54 |
53
|
clsndisj |
|
55 |
30 35 43 50 52 54
|
syl32anc |
|
56 |
|
n0 |
|
57 |
55 56
|
sylib |
|
58 |
45
|
adantr |
|
59 |
|
simpr |
|
60 |
59
|
elin2d |
|
61 |
|
eqidd |
|
62 |
|
oveq2 |
|
63 |
62
|
oveq2d |
|
64 |
63
|
eqeq2d |
|
65 |
|
oveq1 |
|
66 |
65
|
eqeq2d |
|
67 |
64 66
|
rspc2ev |
|
68 |
58 60 61 67
|
syl3anc |
|
69 |
|
ovex |
|
70 |
|
eqeq1 |
|
71 |
70
|
2rexbidv |
|
72 |
15
|
rnmpo |
|
73 |
69 71 72
|
elab2 |
|
74 |
68 73
|
sylibr |
|
75 |
59
|
elin1d |
|
76 |
44
|
adantr |
|
77 |
48
|
adantr |
|
78 |
40
|
adantr |
|
79 |
32
|
adantr |
|
80 |
79 60
|
sseldd |
|
81 |
|
blcom |
|
82 |
76 77 78 80 81
|
syl22anc |
|
83 |
75 82
|
mpbid |
|
84 |
|
simprll |
|
85 |
84
|
adantr |
|
86 |
85
|
rphalfcld |
|
87 |
86
|
rpxrd |
|
88 |
|
simprrr |
|
89 |
84
|
rphalfcld |
|
90 |
|
rpre |
|
91 |
|
rpre |
|
92 |
|
ltle |
|
93 |
90 91 92
|
syl2an |
|
94 |
47 89 93
|
syl2anc |
|
95 |
88 94
|
mpd |
|
96 |
95
|
adantr |
|
97 |
|
ssbl |
|
98 |
76 80 77 87 96 97
|
syl221anc |
|
99 |
85
|
rpred |
|
100 |
98 83
|
sseldd |
|
101 |
|
blhalf |
|
102 |
76 80 99 100 101
|
syl22anc |
|
103 |
|
simprlr |
|
104 |
103
|
adantr |
|
105 |
102 104
|
sstrd |
|
106 |
98 105
|
sstrd |
|
107 |
|
eleq2 |
|
108 |
|
sseq1 |
|
109 |
107 108
|
anbi12d |
|
110 |
109
|
rspcev |
|
111 |
74 83 106 110
|
syl12anc |
|
112 |
57 111
|
exlimddv |
|
113 |
112
|
anassrs |
|
114 |
29 113
|
rexlimddv |
|
115 |
23 114
|
rexlimddv |
|
116 |
115
|
ralrimivva |
|
117 |
|
basgen2 |
|
118 |
3 18 116 117
|
syl3anc |
|
119 |
118 3
|
eqeltrd |
|
120 |
|
tgclb |
|
121 |
119 120
|
sylibr |
|
122 |
|
omelon |
|
123 |
|
simpr2 |
|
124 |
|
nnex |
|
125 |
124
|
xpdom2 |
|
126 |
123 125
|
syl |
|
127 |
|
nnenom |
|
128 |
|
omex |
|
129 |
128
|
enref |
|
130 |
|
xpen |
|
131 |
127 129 130
|
mp2an |
|
132 |
|
xpomen |
|
133 |
131 132
|
entri |
|
134 |
|
domentr |
|
135 |
126 133 134
|
sylancl |
|
136 |
|
ondomen |
|
137 |
122 135 136
|
sylancr |
|
138 |
17
|
ffnd |
|
139 |
|
dffn4 |
|
140 |
138 139
|
sylib |
|
141 |
|
fodomnum |
|
142 |
137 140 141
|
sylc |
|
143 |
|
domtr |
|
144 |
142 135 143
|
syl2anc |
|
145 |
|
2ndci |
|
146 |
121 144 145
|
syl2anc |
|
147 |
118 146
|
eqeltrrd |
|