| Step |
Hyp |
Ref |
Expression |
| 1 |
|
methaus.1 |
|
| 2 |
1
|
mopntop |
|
| 3 |
2
|
adantr |
|
| 4 |
|
simpll |
|
| 5 |
|
simplr1 |
|
| 6 |
|
simprr |
|
| 7 |
5 6
|
sseldd |
|
| 8 |
|
simprl |
|
| 9 |
8
|
nnrpd |
|
| 10 |
9
|
rpreccld |
|
| 11 |
10
|
rpxrd |
|
| 12 |
1
|
blopn |
|
| 13 |
4 7 11 12
|
syl3anc |
|
| 14 |
13
|
ralrimivva |
|
| 15 |
|
eqid |
|
| 16 |
15
|
fmpo |
|
| 17 |
14 16
|
sylib |
|
| 18 |
17
|
frnd |
|
| 19 |
|
simpll |
|
| 20 |
|
simprl |
|
| 21 |
|
simprr |
|
| 22 |
1
|
mopni2 |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
|
simprl |
|
| 25 |
24
|
rphalfcld |
|
| 26 |
|
elrp |
|
| 27 |
|
nnrecl |
|
| 28 |
26 27
|
sylbi |
|
| 29 |
25 28
|
syl |
|
| 30 |
3
|
ad2antrr |
|
| 31 |
|
simpr1 |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
1
|
mopnuni |
|
| 34 |
33
|
ad3antrrr |
|
| 35 |
32 34
|
sseqtrd |
|
| 36 |
|
simplrr |
|
| 37 |
|
simplrl |
|
| 38 |
|
elunii |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
39 34
|
eleqtrrd |
|
| 41 |
|
simpr3 |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
40 42
|
eleqtrrd |
|
| 44 |
19
|
adantr |
|
| 45 |
|
simprrl |
|
| 46 |
45
|
nnrpd |
|
| 47 |
46
|
rpreccld |
|
| 48 |
47
|
rpxrd |
|
| 49 |
1
|
blopn |
|
| 50 |
44 40 48 49
|
syl3anc |
|
| 51 |
|
blcntr |
|
| 52 |
44 40 47 51
|
syl3anc |
|
| 53 |
|
eqid |
|
| 54 |
53
|
clsndisj |
|
| 55 |
30 35 43 50 52 54
|
syl32anc |
|
| 56 |
|
n0 |
|
| 57 |
55 56
|
sylib |
|
| 58 |
45
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
59
|
elin2d |
|
| 61 |
|
eqidd |
|
| 62 |
|
oveq2 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
|
oveq1 |
|
| 66 |
65
|
eqeq2d |
|
| 67 |
64 66
|
rspc2ev |
|
| 68 |
58 60 61 67
|
syl3anc |
|
| 69 |
|
ovex |
|
| 70 |
|
eqeq1 |
|
| 71 |
70
|
2rexbidv |
|
| 72 |
15
|
rnmpo |
|
| 73 |
69 71 72
|
elab2 |
|
| 74 |
68 73
|
sylibr |
|
| 75 |
59
|
elin1d |
|
| 76 |
44
|
adantr |
|
| 77 |
48
|
adantr |
|
| 78 |
40
|
adantr |
|
| 79 |
32
|
adantr |
|
| 80 |
79 60
|
sseldd |
|
| 81 |
|
blcom |
|
| 82 |
76 77 78 80 81
|
syl22anc |
|
| 83 |
75 82
|
mpbid |
|
| 84 |
|
simprll |
|
| 85 |
84
|
adantr |
|
| 86 |
85
|
rphalfcld |
|
| 87 |
86
|
rpxrd |
|
| 88 |
|
simprrr |
|
| 89 |
84
|
rphalfcld |
|
| 90 |
|
rpre |
|
| 91 |
|
rpre |
|
| 92 |
|
ltle |
|
| 93 |
90 91 92
|
syl2an |
|
| 94 |
47 89 93
|
syl2anc |
|
| 95 |
88 94
|
mpd |
|
| 96 |
95
|
adantr |
|
| 97 |
|
ssbl |
|
| 98 |
76 80 77 87 96 97
|
syl221anc |
|
| 99 |
85
|
rpred |
|
| 100 |
98 83
|
sseldd |
|
| 101 |
|
blhalf |
|
| 102 |
76 80 99 100 101
|
syl22anc |
|
| 103 |
|
simprlr |
|
| 104 |
103
|
adantr |
|
| 105 |
102 104
|
sstrd |
|
| 106 |
98 105
|
sstrd |
|
| 107 |
|
eleq2 |
|
| 108 |
|
sseq1 |
|
| 109 |
107 108
|
anbi12d |
|
| 110 |
109
|
rspcev |
|
| 111 |
74 83 106 110
|
syl12anc |
|
| 112 |
57 111
|
exlimddv |
|
| 113 |
112
|
anassrs |
|
| 114 |
29 113
|
rexlimddv |
|
| 115 |
23 114
|
rexlimddv |
|
| 116 |
115
|
ralrimivva |
|
| 117 |
|
basgen2 |
|
| 118 |
3 18 116 117
|
syl3anc |
|
| 119 |
118 3
|
eqeltrd |
|
| 120 |
|
tgclb |
|
| 121 |
119 120
|
sylibr |
|
| 122 |
|
omelon |
|
| 123 |
|
simpr2 |
|
| 124 |
|
nnex |
|
| 125 |
124
|
xpdom2 |
|
| 126 |
123 125
|
syl |
|
| 127 |
|
nnenom |
|
| 128 |
|
omex |
|
| 129 |
128
|
enref |
|
| 130 |
|
xpen |
|
| 131 |
127 129 130
|
mp2an |
|
| 132 |
|
xpomen |
|
| 133 |
131 132
|
entri |
|
| 134 |
|
domentr |
|
| 135 |
126 133 134
|
sylancl |
|
| 136 |
|
ondomen |
|
| 137 |
122 135 136
|
sylancr |
|
| 138 |
17
|
ffnd |
|
| 139 |
|
dffn4 |
|
| 140 |
138 139
|
sylib |
|
| 141 |
|
fodomnum |
|
| 142 |
137 140 141
|
sylc |
|
| 143 |
|
domtr |
|
| 144 |
142 135 143
|
syl2anc |
|
| 145 |
|
2ndci |
|
| 146 |
121 144 145
|
syl2anc |
|
| 147 |
118 146
|
eqeltrrd |
|