Metamath Proof Explorer


Theorem metcl

Description: Closure of the distance function of a metric space. Part of Property M1 of Kreyszig p. 3. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion metcl D Met X A X B X A D B

Proof

Step Hyp Ref Expression
1 metf D Met X D : X × X
2 fovrn D : X × X A X B X A D B
3 1 2 syl3an1 D Met X A X B X A D B