Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by NM, 11-Nov-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metcld.2 | |
|
| Assertion | metcld | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | |
|
| 2 | 1 | mopntop | |
| 3 | 1 | mopnuni | |
| 4 | 3 | sseq2d | |
| 5 | 4 | biimpa | |
| 6 | eqid | |
|
| 7 | 6 | iscld4 | |
| 8 | 2 5 7 | syl2an2r | |
| 9 | 19.23v | |
|
| 10 | simpl | |
|
| 11 | simpr | |
|
| 12 | 1 10 11 | metelcls | |
| 13 | 12 | imbi1d | |
| 14 | 9 13 | bitr4id | |
| 15 | 14 | albidv | |
| 16 | df-ss | |
|
| 17 | 15 16 | bitr4di | |
| 18 | 8 17 | bitr4d | |