Metamath Proof Explorer


Theorem metcn

Description: Two ways to say a mapping from metric C to metric D is continuous. Theorem 10.1 of Munkres p. 127. The second biconditional argument says that for every positive "epsilon" y there is a positive "delta" z such that a distance less than delta in C maps to a distance less than epsilon in D . (Contributed by NM, 15-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses metcn.2 J = MetOpen C
metcn.4 K = MetOpen D
Assertion metcn C ∞Met X D ∞Met Y F J Cn K F : X Y x X y + z + w X x C w < z F x D F w < y

Proof

Step Hyp Ref Expression
1 metcn.2 J = MetOpen C
2 metcn.4 K = MetOpen D
3 1 mopntopon C ∞Met X J TopOn X
4 2 mopntopon D ∞Met Y K TopOn Y
5 cncnp J TopOn X K TopOn Y F J Cn K F : X Y x X F J CnP K x
6 3 4 5 syl2an C ∞Met X D ∞Met Y F J Cn K F : X Y x X F J CnP K x
7 simplr C ∞Met X D ∞Met Y F : X Y x X F : X Y
8 1 2 metcnp C ∞Met X D ∞Met Y x X F J CnP K x F : X Y y + z + w X x C w < z F x D F w < y
9 8 ad4ant124 C ∞Met X D ∞Met Y F : X Y x X F J CnP K x F : X Y y + z + w X x C w < z F x D F w < y
10 7 9 mpbirand C ∞Met X D ∞Met Y F : X Y x X F J CnP K x y + z + w X x C w < z F x D F w < y
11 10 ralbidva C ∞Met X D ∞Met Y F : X Y x X F J CnP K x x X y + z + w X x C w < z F x D F w < y
12 11 pm5.32da C ∞Met X D ∞Met Y F : X Y x X F J CnP K x F : X Y x X y + z + w X x C w < z F x D F w < y
13 6 12 bitrd C ∞Met X D ∞Met Y F J Cn K F : X Y x X y + z + w X x C w < z F x D F w < y