Metamath Proof Explorer


Theorem metdcnlem

Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xmetdcn2.1 J=MetOpenD
xmetdcn2.2 C=dist𝑠*
xmetdcn2.3 K=MetOpenC
metdcn.d φD∞MetX
metdcn.a φAX
metdcn.b φBX
metdcn.r φR+
metdcn.y φYX
metdcn.z φZX
metdcn.4 φADY<R2
metdcn.5 φBDZ<R2
Assertion metdcnlem φADBCYDZ<R

Proof

Step Hyp Ref Expression
1 xmetdcn2.1 J=MetOpenD
2 xmetdcn2.2 C=dist𝑠*
3 xmetdcn2.3 K=MetOpenC
4 metdcn.d φD∞MetX
5 metdcn.a φAX
6 metdcn.b φBX
7 metdcn.r φR+
8 metdcn.y φYX
9 metdcn.z φZX
10 metdcn.4 φADY<R2
11 metdcn.5 φBDZ<R2
12 2 xrsxmet C∞Met*
13 12 a1i φC∞Met*
14 xmetcl D∞MetXAXBXADB*
15 4 5 6 14 syl3anc φADB*
16 xmetcl D∞MetXYXZXYDZ*
17 4 8 9 16 syl3anc φYDZ*
18 xmetcl D∞MetXYXBXYDB*
19 4 8 6 18 syl3anc φYDB*
20 7 rphalfcld φR2+
21 20 rpred φR2
22 xmetcl C∞Met*ADB*YDB*ADBCYDB*
23 13 15 19 22 syl3anc φADBCYDB*
24 20 rpxrd φR2*
25 xmetcl D∞MetXAXYXADY*
26 4 5 8 25 syl3anc φADY*
27 2 xmetrtri2 D∞MetXAXYXBXADBCYDBADY
28 4 5 8 6 27 syl13anc φADBCYDBADY
29 23 26 24 28 10 xrlelttrd φADBCYDB<R2
30 23 24 29 xrltled φADBCYDBR2
31 xmetlecl C∞Met*ADB*YDB*R2ADBCYDBR2ADBCYDB
32 13 15 19 21 30 31 syl122anc φADBCYDB
33 xmetcl C∞Met*YDB*YDZ*YDBCYDZ*
34 13 19 17 33 syl3anc φYDBCYDZ*
35 xmetcl D∞MetXBXZXBDZ*
36 4 6 9 35 syl3anc φBDZ*
37 xmetsym D∞MetXYXBXYDB=BDY
38 4 8 6 37 syl3anc φYDB=BDY
39 xmetsym D∞MetXYXZXYDZ=ZDY
40 4 8 9 39 syl3anc φYDZ=ZDY
41 38 40 oveq12d φYDBCYDZ=BDYCZDY
42 2 xmetrtri2 D∞MetXBXZXYXBDYCZDYBDZ
43 4 6 9 8 42 syl13anc φBDYCZDYBDZ
44 41 43 eqbrtrd φYDBCYDZBDZ
45 34 36 24 44 11 xrlelttrd φYDBCYDZ<R2
46 34 24 45 xrltled φYDBCYDZR2
47 xmetlecl C∞Met*YDB*YDZ*R2YDBCYDZR2YDBCYDZ
48 13 19 17 21 46 47 syl122anc φYDBCYDZ
49 32 48 readdcld φADBCYDB+YDBCYDZ
50 xmettri C∞Met*ADB*YDZ*YDB*ADBCYDZADBCYDB+𝑒YDBCYDZ
51 13 15 17 19 50 syl13anc φADBCYDZADBCYDB+𝑒YDBCYDZ
52 32 48 rexaddd φADBCYDB+𝑒YDBCYDZ=ADBCYDB+YDBCYDZ
53 51 52 breqtrd φADBCYDZADBCYDB+YDBCYDZ
54 xmetlecl C∞Met*ADB*YDZ*ADBCYDB+YDBCYDZADBCYDZADBCYDB+YDBCYDZADBCYDZ
55 13 15 17 49 53 54 syl122anc φADBCYDZ
56 7 rpred φR
57 32 48 56 29 45 lt2halvesd φADBCYDB+YDBCYDZ<R
58 55 49 56 53 57 lelttrd φADBCYDZ<R