Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
metdmdm
Next ⟩
xmetunirn
Metamath Proof Explorer
Ascii
Unicode
Theorem
metdmdm
Description:
Recover the base set from a metric.
(Contributed by
Mario Carneiro
, 23-Aug-2015)
Ref
Expression
Assertion
metdmdm
⊢
D
∈
Met
⁡
X
→
X
=
dom
⁡
dom
⁡
D
Proof
Step
Hyp
Ref
Expression
1
metxmet
⊢
D
∈
Met
⁡
X
→
D
∈
∞Met
⁡
X
2
xmetdmdm
⊢
D
∈
∞Met
⁡
X
→
X
=
dom
⁡
dom
⁡
D
3
1
2
syl
⊢
D
∈
Met
⁡
X
→
X
=
dom
⁡
dom
⁡
D