Metamath Proof Explorer


Theorem metdmdm

Description: Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion metdmdm D Met X X = dom dom D

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xmetdmdm D ∞Met X X = dom dom D
3 1 2 syl D Met X X = dom dom D