Metamath Proof Explorer


Theorem metds0

Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metds0 D ∞Met X S X A S F A = 0

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 1 metdsf D ∞Met X S X F : X 0 +∞
3 2 3adant3 D ∞Met X S X A S F : X 0 +∞
4 ssel2 S X A S A X
5 4 3adant1 D ∞Met X S X A S A X
6 3 5 ffvelrnd D ∞Met X S X A S F A 0 +∞
7 eliccxr F A 0 +∞ F A *
8 6 7 syl D ∞Met X S X A S F A *
9 8 xrleidd D ∞Met X S X A S F A F A
10 simp1 D ∞Met X S X A S D ∞Met X
11 simp2 D ∞Met X S X A S S X
12 1 metdsge D ∞Met X S X A X F A * F A F A S A ball D F A =
13 10 11 5 8 12 syl31anc D ∞Met X S X A S F A F A S A ball D F A =
14 9 13 mpbid D ∞Met X S X A S S A ball D F A =
15 simpl3 D ∞Met X S X A S 0 < F A A S
16 10 adantr D ∞Met X S X A S 0 < F A D ∞Met X
17 5 adantr D ∞Met X S X A S 0 < F A A X
18 8 adantr D ∞Met X S X A S 0 < F A F A *
19 simpr D ∞Met X S X A S 0 < F A 0 < F A
20 xblcntr D ∞Met X A X F A * 0 < F A A A ball D F A
21 16 17 18 19 20 syl112anc D ∞Met X S X A S 0 < F A A A ball D F A
22 inelcm A S A A ball D F A S A ball D F A
23 15 21 22 syl2anc D ∞Met X S X A S 0 < F A S A ball D F A
24 23 ex D ∞Met X S X A S 0 < F A S A ball D F A
25 24 necon2bd D ∞Met X S X A S S A ball D F A = ¬ 0 < F A
26 14 25 mpd D ∞Met X S X A S ¬ 0 < F A
27 elxrge0 F A 0 +∞ F A * 0 F A
28 27 simprbi F A 0 +∞ 0 F A
29 6 28 syl D ∞Met X S X A S 0 F A
30 0xr 0 *
31 xrleloe 0 * F A * 0 F A 0 < F A 0 = F A
32 30 8 31 sylancr D ∞Met X S X A S 0 F A 0 < F A 0 = F A
33 29 32 mpbid D ∞Met X S X A S 0 < F A 0 = F A
34 33 ord D ∞Met X S X A S ¬ 0 < F A 0 = F A
35 26 34 mpd D ∞Met X S X A S 0 = F A
36 35 eqcomd D ∞Met X S X A S F A = 0