Metamath Proof Explorer


Theorem metdscnlem

Description: Lemma for metdscn . (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f F = x X sup ran y S x D y * <
metdscn.j J = MetOpen D
metdscn.c C = dist 𝑠 *
metdscn.k K = MetOpen C
metdscnlem.1 φ D ∞Met X
metdscnlem.2 φ S X
metdscnlem.3 φ A X
metdscnlem.4 φ B X
metdscnlem.5 φ R +
metdscnlem.6 φ A D B < R
Assertion metdscnlem φ F A + 𝑒 F B < R

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 metdscn.j J = MetOpen D
3 metdscn.c C = dist 𝑠 *
4 metdscn.k K = MetOpen C
5 metdscnlem.1 φ D ∞Met X
6 metdscnlem.2 φ S X
7 metdscnlem.3 φ A X
8 metdscnlem.4 φ B X
9 metdscnlem.5 φ R +
10 metdscnlem.6 φ A D B < R
11 1 metdsf D ∞Met X S X F : X 0 +∞
12 5 6 11 syl2anc φ F : X 0 +∞
13 12 7 ffvelrnd φ F A 0 +∞
14 eliccxr F A 0 +∞ F A *
15 13 14 syl φ F A *
16 12 8 ffvelrnd φ F B 0 +∞
17 eliccxr F B 0 +∞ F B *
18 16 17 syl φ F B *
19 18 xnegcld φ F B *
20 15 19 xaddcld φ F A + 𝑒 F B *
21 xmetcl D ∞Met X A X B X A D B *
22 5 7 8 21 syl3anc φ A D B *
23 9 rpxrd φ R *
24 1 metdstri D ∞Met X S X A X B X F A A D B + 𝑒 F B
25 5 6 7 8 24 syl22anc φ F A A D B + 𝑒 F B
26 elxrge0 F A 0 +∞ F A * 0 F A
27 26 simprbi F A 0 +∞ 0 F A
28 13 27 syl φ 0 F A
29 elxrge0 F B 0 +∞ F B * 0 F B
30 29 simprbi F B 0 +∞ 0 F B
31 16 30 syl φ 0 F B
32 ge0nemnf F B * 0 F B F B −∞
33 18 31 32 syl2anc φ F B −∞
34 xmetge0 D ∞Met X A X B X 0 A D B
35 5 7 8 34 syl3anc φ 0 A D B
36 xlesubadd F A * F B * A D B * 0 F A F B −∞ 0 A D B F A + 𝑒 F B A D B F A A D B + 𝑒 F B
37 15 18 22 28 33 35 36 syl33anc φ F A + 𝑒 F B A D B F A A D B + 𝑒 F B
38 25 37 mpbird φ F A + 𝑒 F B A D B
39 20 22 23 38 10 xrlelttrd φ F A + 𝑒 F B < R