| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f |  | 
						
							| 2 |  | metdscn.j |  | 
						
							| 3 |  | simpll1 |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 |  | simprr |  | 
						
							| 6 | 2 | mopni2 |  | 
						
							| 7 | 3 4 5 6 | syl3anc |  | 
						
							| 8 |  | simprr |  | 
						
							| 9 | 8 | ssrind |  | 
						
							| 10 |  | rpgt0 |  | 
						
							| 11 |  | 0re |  | 
						
							| 12 |  | rpre |  | 
						
							| 13 |  | ltnle |  | 
						
							| 14 | 11 12 13 | sylancr |  | 
						
							| 15 | 10 14 | mpbid |  | 
						
							| 16 | 15 | ad2antrl |  | 
						
							| 17 |  | simpllr |  | 
						
							| 18 | 17 | breq2d |  | 
						
							| 19 | 3 | adantr |  | 
						
							| 20 |  | simpl2 |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | simpl3 |  | 
						
							| 23 | 22 | ad2antrr |  | 
						
							| 24 |  | rpxr |  | 
						
							| 25 | 24 | ad2antrl |  | 
						
							| 26 | 1 | metdsge |  | 
						
							| 27 | 19 21 23 25 26 | syl31anc |  | 
						
							| 28 | 18 27 | bitr3d |  | 
						
							| 29 |  | incom |  | 
						
							| 30 | 29 | eqeq1i |  | 
						
							| 31 | 28 30 | bitrdi |  | 
						
							| 32 | 31 | necon3bbid |  | 
						
							| 33 | 16 32 | mpbid |  | 
						
							| 34 |  | ssn0 |  | 
						
							| 35 | 9 33 34 | syl2anc |  | 
						
							| 36 | 7 35 | rexlimddv |  | 
						
							| 37 | 36 | expr |  | 
						
							| 38 | 37 | ralrimiva |  | 
						
							| 39 | 2 | mopntopon |  | 
						
							| 40 | 39 | 3ad2ant1 |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | topontop |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 |  | toponuni |  | 
						
							| 45 | 41 44 | syl |  | 
						
							| 46 | 20 45 | sseqtrd |  | 
						
							| 47 | 22 45 | eleqtrd |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 48 | elcls |  | 
						
							| 50 | 43 46 47 49 | syl3anc |  | 
						
							| 51 | 38 50 | mpbird |  | 
						
							| 52 |  | incom |  | 
						
							| 53 | 1 | metdsf |  | 
						
							| 54 | 53 | ffvelcdmda |  | 
						
							| 55 | 54 | 3impa |  | 
						
							| 56 |  | eliccxr |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 57 | xrleidd |  | 
						
							| 59 | 1 | metdsge |  | 
						
							| 60 | 57 59 | mpdan |  | 
						
							| 61 | 58 60 | mpbid |  | 
						
							| 62 | 52 61 | eqtrid |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 40 | ad2antrr |  | 
						
							| 65 | 64 42 | syl |  | 
						
							| 66 |  | simpll2 |  | 
						
							| 67 | 64 44 | syl |  | 
						
							| 68 | 66 67 | sseqtrd |  | 
						
							| 69 |  | simplr |  | 
						
							| 70 |  | simpll1 |  | 
						
							| 71 |  | simpll3 |  | 
						
							| 72 | 57 | ad2antrr |  | 
						
							| 73 | 2 | blopn |  | 
						
							| 74 | 70 71 72 73 | syl3anc |  | 
						
							| 75 |  | simpr |  | 
						
							| 76 |  | xblcntr |  | 
						
							| 77 | 70 71 72 75 76 | syl112anc |  | 
						
							| 78 | 48 | clsndisj |  | 
						
							| 79 | 65 68 69 74 77 78 | syl32anc |  | 
						
							| 80 | 79 | ex |  | 
						
							| 81 | 80 | necon2bd |  | 
						
							| 82 | 63 81 | mpd |  | 
						
							| 83 |  | elxrge0 |  | 
						
							| 84 | 83 | simprbi |  | 
						
							| 85 | 55 84 | syl |  | 
						
							| 86 |  | 0xr |  | 
						
							| 87 |  | xrleloe |  | 
						
							| 88 | 86 57 87 | sylancr |  | 
						
							| 89 | 85 88 | mpbid |  | 
						
							| 90 | 89 | adantr |  | 
						
							| 91 | 90 | ord |  | 
						
							| 92 | 82 91 | mpd |  | 
						
							| 93 | 92 | eqcomd |  | 
						
							| 94 | 51 93 | impbida |  |