Metamath Proof Explorer


Theorem metdsge

Description: The distance from the point A to the set S is greater than R iff the R -ball around A misses S . (Contributed by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metdsge D ∞Met X S X A X R * R F A S A ball D R =

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 simpl3 D ∞Met X S X A X R * A X
3 1 metdsval A X F A = sup ran y S A D y * <
4 2 3 syl D ∞Met X S X A X R * F A = sup ran y S A D y * <
5 4 breq2d D ∞Met X S X A X R * R F A R sup ran y S A D y * <
6 simpll1 D ∞Met X S X A X R * w S D ∞Met X
7 2 adantr D ∞Met X S X A X R * w S A X
8 simpl2 D ∞Met X S X A X R * S X
9 8 sselda D ∞Met X S X A X R * w S w X
10 xmetcl D ∞Met X A X w X A D w *
11 6 7 9 10 syl3anc D ∞Met X S X A X R * w S A D w *
12 oveq2 y = w A D y = A D w
13 12 cbvmptv y S A D y = w S A D w
14 11 13 fmptd D ∞Met X S X A X R * y S A D y : S *
15 14 frnd D ∞Met X S X A X R * ran y S A D y *
16 simpr D ∞Met X S X A X R * R *
17 infxrgelb ran y S A D y * R * R sup ran y S A D y * < z ran y S A D y R z
18 15 16 17 syl2anc D ∞Met X S X A X R * R sup ran y S A D y * < z ran y S A D y R z
19 16 adantr D ∞Met X S X A X R * w S R *
20 elbl2 D ∞Met X R * A X w X w A ball D R A D w < R
21 6 19 7 9 20 syl22anc D ∞Met X S X A X R * w S w A ball D R A D w < R
22 xrltnle A D w * R * A D w < R ¬ R A D w
23 11 19 22 syl2anc D ∞Met X S X A X R * w S A D w < R ¬ R A D w
24 21 23 bitrd D ∞Met X S X A X R * w S w A ball D R ¬ R A D w
25 24 con2bid D ∞Met X S X A X R * w S R A D w ¬ w A ball D R
26 25 ralbidva D ∞Met X S X A X R * w S R A D w w S ¬ w A ball D R
27 ovex A D w V
28 27 rgenw w S A D w V
29 breq2 z = A D w R z R A D w
30 13 29 ralrnmptw w S A D w V z ran y S A D y R z w S R A D w
31 28 30 ax-mp z ran y S A D y R z w S R A D w
32 disj S A ball D R = w S ¬ w A ball D R
33 26 31 32 3bitr4g D ∞Met X S X A X R * z ran y S A D y R z S A ball D R =
34 5 18 33 3bitrd D ∞Met X S X A X R * R F A S A ball D R =