Metamath Proof Explorer


Theorem metdsle

Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metdsle D ∞Met X S X A S B X F B A D B

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 simprr D ∞Met X S X A S B X B X
3 simpr D ∞Met X S X S X
4 3 sselda D ∞Met X S X A S A X
5 4 adantrr D ∞Met X S X A S B X A X
6 2 5 jca D ∞Met X S X A S B X B X A X
7 1 metdstri D ∞Met X S X B X A X F B B D A + 𝑒 F A
8 6 7 syldan D ∞Met X S X A S B X F B B D A + 𝑒 F A
9 simpll D ∞Met X S X A S B X D ∞Met X
10 xmetsym D ∞Met X B X A X B D A = A D B
11 9 2 5 10 syl3anc D ∞Met X S X A S B X B D A = A D B
12 1 metds0 D ∞Met X S X A S F A = 0
13 12 3expa D ∞Met X S X A S F A = 0
14 13 adantrr D ∞Met X S X A S B X F A = 0
15 11 14 oveq12d D ∞Met X S X A S B X B D A + 𝑒 F A = A D B + 𝑒 0
16 xmetcl D ∞Met X A X B X A D B *
17 9 5 2 16 syl3anc D ∞Met X S X A S B X A D B *
18 17 xaddid1d D ∞Met X S X A S B X A D B + 𝑒 0 = A D B
19 15 18 eqtrd D ∞Met X S X A S B X B D A + 𝑒 F A = A D B
20 8 19 breqtrd D ∞Met X S X A S B X F B A D B