Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
|
2 |
|
n0 |
|
3 |
|
metxmet |
|
4 |
1
|
metdsf |
|
5 |
3 4
|
sylan |
|
6 |
5
|
adantr |
|
7 |
6
|
ffnd |
|
8 |
5
|
adantr |
|
9 |
|
simprr |
|
10 |
8 9
|
ffvelrnd |
|
11 |
|
eliccxr |
|
12 |
10 11
|
syl |
|
13 |
|
simpll |
|
14 |
|
simpr |
|
15 |
14
|
sselda |
|
16 |
15
|
adantrr |
|
17 |
|
metcl |
|
18 |
13 16 9 17
|
syl3anc |
|
19 |
|
elxrge0 |
|
20 |
19
|
simprbi |
|
21 |
10 20
|
syl |
|
22 |
1
|
metdsle |
|
23 |
3 22
|
sylanl1 |
|
24 |
|
xrrege0 |
|
25 |
12 18 21 23 24
|
syl22anc |
|
26 |
25
|
anassrs |
|
27 |
26
|
ralrimiva |
|
28 |
|
ffnfv |
|
29 |
7 27 28
|
sylanbrc |
|
30 |
29
|
ex |
|
31 |
30
|
exlimdv |
|
32 |
2 31
|
syl5bi |
|
33 |
32
|
3impia |
|