| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f |  | 
						
							| 2 |  | n0 |  | 
						
							| 3 |  | metxmet |  | 
						
							| 4 | 1 | metdsf |  | 
						
							| 5 | 3 4 | sylan |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 6 | ffnd |  | 
						
							| 8 | 5 | adantr |  | 
						
							| 9 |  | simprr |  | 
						
							| 10 | 8 9 | ffvelcdmd |  | 
						
							| 11 |  | eliccxr |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | simpll |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 14 | sselda |  | 
						
							| 16 | 15 | adantrr |  | 
						
							| 17 |  | metcl |  | 
						
							| 18 | 13 16 9 17 | syl3anc |  | 
						
							| 19 |  | elxrge0 |  | 
						
							| 20 | 19 | simprbi |  | 
						
							| 21 | 10 20 | syl |  | 
						
							| 22 | 1 | metdsle |  | 
						
							| 23 | 3 22 | sylanl1 |  | 
						
							| 24 |  | xrrege0 |  | 
						
							| 25 | 12 18 21 23 24 | syl22anc |  | 
						
							| 26 | 25 | anassrs |  | 
						
							| 27 | 26 | ralrimiva |  | 
						
							| 28 |  | ffnfv |  | 
						
							| 29 | 7 27 28 | sylanbrc |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 30 | exlimdv |  | 
						
							| 32 | 2 31 | biimtrid |  | 
						
							| 33 | 32 | 3impia |  |