Metamath Proof Explorer


Theorem metdstri

Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol d denotes the point-point and point-set distance functions, this theorem would be written d ( a , S ) <_ d ( a , b ) + d ( b , S ) . (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metdstri D ∞Met X S X A X B X F A A D B + 𝑒 F B

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 simprr D ∞Met X S X A X B X A D B F A F A
3 simprl D ∞Met X S X A X B X A D B F A A D B
4 rexsub F A A D B F A + 𝑒 A D B = F A A D B
5 2 3 4 syl2anc D ∞Met X S X A X B X A D B F A F A + 𝑒 A D B = F A A D B
6 5 oveq2d D ∞Met X S X A X B X A D B F A B ball D F A + 𝑒 A D B = B ball D F A A D B
7 simpll D ∞Met X S X A X B X D ∞Met X
8 7 adantr D ∞Met X S X A X B X A D B F A D ∞Met X
9 simprr D ∞Met X S X A X B X B X
10 9 adantr D ∞Met X S X A X B X A D B F A B X
11 simprl D ∞Met X S X A X B X A X
12 11 adantr D ∞Met X S X A X B X A D B F A A X
13 2 3 resubcld D ∞Met X S X A X B X A D B F A F A A D B
14 3 leidd D ∞Met X S X A X B X A D B F A A D B A D B
15 xmetsym D ∞Met X A X B X A D B = B D A
16 7 11 9 15 syl3anc D ∞Met X S X A X B X A D B = B D A
17 16 adantr D ∞Met X S X A X B X A D B F A A D B = B D A
18 17 eqcomd D ∞Met X S X A X B X A D B F A B D A = A D B
19 2 recnd D ∞Met X S X A X B X A D B F A F A
20 3 recnd D ∞Met X S X A X B X A D B F A A D B
21 19 20 nncand D ∞Met X S X A X B X A D B F A F A F A A D B = A D B
22 14 18 21 3brtr4d D ∞Met X S X A X B X A D B F A B D A F A F A A D B
23 blss2 D ∞Met X B X A X F A A D B F A B D A F A F A A D B B ball D F A A D B A ball D F A
24 8 10 12 13 2 22 23 syl33anc D ∞Met X S X A X B X A D B F A B ball D F A A D B A ball D F A
25 6 24 eqsstrd D ∞Met X S X A X B X A D B F A B ball D F A + 𝑒 A D B A ball D F A
26 25 expr D ∞Met X S X A X B X A D B F A B ball D F A + 𝑒 A D B A ball D F A
27 7 adantr D ∞Met X S X A X B X A D B F A = +∞ D ∞Met X
28 9 adantr D ∞Met X S X A X B X A D B F A = +∞ B X
29 1 metdsf D ∞Met X S X F : X 0 +∞
30 29 adantr D ∞Met X S X A X B X F : X 0 +∞
31 30 11 ffvelrnd D ∞Met X S X A X B X F A 0 +∞
32 eliccxr F A 0 +∞ F A *
33 31 32 syl D ∞Met X S X A X B X F A *
34 33 adantr D ∞Met X S X A X B X A D B F A *
35 xmetcl D ∞Met X A X B X A D B *
36 7 11 9 35 syl3anc D ∞Met X S X A X B X A D B *
37 36 adantr D ∞Met X S X A X B X A D B A D B *
38 37 xnegcld D ∞Met X S X A X B X A D B A D B *
39 34 38 xaddcld D ∞Met X S X A X B X A D B F A + 𝑒 A D B *
40 39 adantrr D ∞Met X S X A X B X A D B F A = +∞ F A + 𝑒 A D B *
41 pnfxr +∞ *
42 41 a1i D ∞Met X S X A X B X A D B F A = +∞ +∞ *
43 pnfge F A + 𝑒 A D B * F A + 𝑒 A D B +∞
44 40 43 syl D ∞Met X S X A X B X A D B F A = +∞ F A + 𝑒 A D B +∞
45 ssbl D ∞Met X B X F A + 𝑒 A D B * +∞ * F A + 𝑒 A D B +∞ B ball D F A + 𝑒 A D B B ball D +∞
46 27 28 40 42 44 45 syl221anc D ∞Met X S X A X B X A D B F A = +∞ B ball D F A + 𝑒 A D B B ball D +∞
47 simprr D ∞Met X S X A X B X A D B F A = +∞ F A = +∞
48 47 oveq2d D ∞Met X S X A X B X A D B F A = +∞ A ball D F A = A ball D +∞
49 11 adantr D ∞Met X S X A X B X A D B F A = +∞ A X
50 simprl D ∞Met X S X A X B X A D B F A = +∞ A D B
51 xblpnf D ∞Met X A X B A ball D +∞ B X A D B
52 27 49 51 syl2anc D ∞Met X S X A X B X A D B F A = +∞ B A ball D +∞ B X A D B
53 28 50 52 mpbir2and D ∞Met X S X A X B X A D B F A = +∞ B A ball D +∞
54 blpnfctr D ∞Met X A X B A ball D +∞ A ball D +∞ = B ball D +∞
55 27 49 53 54 syl3anc D ∞Met X S X A X B X A D B F A = +∞ A ball D +∞ = B ball D +∞
56 48 55 eqtr2d D ∞Met X S X A X B X A D B F A = +∞ B ball D +∞ = A ball D F A
57 46 56 sseqtrd D ∞Met X S X A X B X A D B F A = +∞ B ball D F A + 𝑒 A D B A ball D F A
58 57 expr D ∞Met X S X A X B X A D B F A = +∞ B ball D F A + 𝑒 A D B A ball D F A
59 elxrge0 F A 0 +∞ F A * 0 F A
60 59 simprbi F A 0 +∞ 0 F A
61 31 60 syl D ∞Met X S X A X B X 0 F A
62 ge0nemnf F A * 0 F A F A −∞
63 33 61 62 syl2anc D ∞Met X S X A X B X F A −∞
64 33 63 jca D ∞Met X S X A X B X F A * F A −∞
65 64 adantr D ∞Met X S X A X B X A D B F A * F A −∞
66 xrnemnf F A * F A −∞ F A F A = +∞
67 65 66 sylib D ∞Met X S X A X B X A D B F A F A = +∞
68 26 58 67 mpjaod D ∞Met X S X A X B X A D B B ball D F A + 𝑒 A D B A ball D F A
69 pnfnlt F A * ¬ +∞ < F A
70 33 69 syl D ∞Met X S X A X B X ¬ +∞ < F A
71 70 adantr D ∞Met X S X A X B X A D B = +∞ ¬ +∞ < F A
72 36 xnegcld D ∞Met X S X A X B X A D B *
73 33 72 xaddcld D ∞Met X S X A X B X F A + 𝑒 A D B *
74 xbln0 D ∞Met X B X F A + 𝑒 A D B * B ball D F A + 𝑒 A D B 0 < F A + 𝑒 A D B
75 7 9 73 74 syl3anc D ∞Met X S X A X B X B ball D F A + 𝑒 A D B 0 < F A + 𝑒 A D B
76 xposdif A D B * F A * A D B < F A 0 < F A + 𝑒 A D B
77 36 33 76 syl2anc D ∞Met X S X A X B X A D B < F A 0 < F A + 𝑒 A D B
78 75 77 bitr4d D ∞Met X S X A X B X B ball D F A + 𝑒 A D B A D B < F A
79 breq1 A D B = +∞ A D B < F A +∞ < F A
80 78 79 sylan9bb D ∞Met X S X A X B X A D B = +∞ B ball D F A + 𝑒 A D B +∞ < F A
81 80 necon1bbid D ∞Met X S X A X B X A D B = +∞ ¬ +∞ < F A B ball D F A + 𝑒 A D B =
82 71 81 mpbid D ∞Met X S X A X B X A D B = +∞ B ball D F A + 𝑒 A D B =
83 0ss A ball D F A
84 82 83 eqsstrdi D ∞Met X S X A X B X A D B = +∞ B ball D F A + 𝑒 A D B A ball D F A
85 xmetge0 D ∞Met X A X B X 0 A D B
86 7 11 9 85 syl3anc D ∞Met X S X A X B X 0 A D B
87 ge0nemnf A D B * 0 A D B A D B −∞
88 36 86 87 syl2anc D ∞Met X S X A X B X A D B −∞
89 36 88 jca D ∞Met X S X A X B X A D B * A D B −∞
90 xrnemnf A D B * A D B −∞ A D B A D B = +∞
91 89 90 sylib D ∞Met X S X A X B X A D B A D B = +∞
92 68 84 91 mpjaodan D ∞Met X S X A X B X B ball D F A + 𝑒 A D B A ball D F A
93 sslin B ball D F A + 𝑒 A D B A ball D F A S B ball D F A + 𝑒 A D B S A ball D F A
94 92 93 syl D ∞Met X S X A X B X S B ball D F A + 𝑒 A D B S A ball D F A
95 33 xrleidd D ∞Met X S X A X B X F A F A
96 simplr D ∞Met X S X A X B X S X
97 1 metdsge D ∞Met X S X A X F A * F A F A S A ball D F A =
98 7 96 11 33 97 syl31anc D ∞Met X S X A X B X F A F A S A ball D F A =
99 95 98 mpbid D ∞Met X S X A X B X S A ball D F A =
100 sseq0 S B ball D F A + 𝑒 A D B S A ball D F A S A ball D F A = S B ball D F A + 𝑒 A D B =
101 94 99 100 syl2anc D ∞Met X S X A X B X S B ball D F A + 𝑒 A D B =
102 1 metdsge D ∞Met X S X B X F A + 𝑒 A D B * F A + 𝑒 A D B F B S B ball D F A + 𝑒 A D B =
103 7 96 9 73 102 syl31anc D ∞Met X S X A X B X F A + 𝑒 A D B F B S B ball D F A + 𝑒 A D B =
104 101 103 mpbird D ∞Met X S X A X B X F A + 𝑒 A D B F B
105 30 9 ffvelrnd D ∞Met X S X A X B X F B 0 +∞
106 eliccxr F B 0 +∞ F B *
107 105 106 syl D ∞Met X S X A X B X F B *
108 elxrge0 F B 0 +∞ F B * 0 F B
109 108 simprbi F B 0 +∞ 0 F B
110 105 109 syl D ∞Met X S X A X B X 0 F B
111 xlesubadd F A * A D B * F B * 0 F A A D B −∞ 0 F B F A + 𝑒 A D B F B F A F B + 𝑒 A D B
112 33 36 107 61 88 110 111 syl33anc D ∞Met X S X A X B X F A + 𝑒 A D B F B F A F B + 𝑒 A D B
113 104 112 mpbid D ∞Met X S X A X B X F A F B + 𝑒 A D B
114 xaddcom F B * A D B * F B + 𝑒 A D B = A D B + 𝑒 F B
115 107 36 114 syl2anc D ∞Met X S X A X B X F B + 𝑒 A D B = A D B + 𝑒 F B
116 113 115 breqtrd D ∞Met X S X A X B X F A A D B + 𝑒 F B