Metamath Proof Explorer


Theorem metdsval

Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f F = x X sup ran y S x D y * <
Assertion metdsval A X F A = sup ran y S A D y * <

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 oveq1 x = A x D y = A D y
3 2 mpteq2dv x = A y S x D y = y S A D y
4 3 rneqd x = A ran y S x D y = ran y S A D y
5 4 infeq1d x = A sup ran y S x D y * < = sup ran y S A D y * <
6 xrltso < Or *
7 6 infex sup ran y S A D y * < V
8 5 1 7 fvmpt A X F A = sup ran y S A D y * <