Metamath Proof Explorer


Theorem meteq0

Description: The value of a metric is zero iff its arguments are equal. Property M2 of Kreyszig p. 4. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion meteq0 D Met X A X B X A D B = 0 A = B

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xmeteq0 D ∞Met X A X B X A D B = 0 A = B
3 1 2 syl3an1 D Met X A X B X A D B = 0 A = B