Metamath Proof Explorer


Theorem metf

Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion metf D Met X D : X × X

Proof

Step Hyp Ref Expression
1 metflem D Met X D : X × X x X y X x D y = 0 x = y z X x D y z D x + z D y
2 1 simpld D Met X D : X × X