Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
metf
Next ⟩
xmetcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
metf
Description:
Mapping of the distance function of a metric space.
(Contributed by
NM
, 30-Aug-2006)
Ref
Expression
Assertion
metf
⊢
D
∈
Met
⁡
X
→
D
:
X
×
X
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
metflem
⊢
D
∈
Met
⁡
X
→
D
:
X
×
X
⟶
ℝ
∧
∀
x
∈
X
∀
y
∈
X
x
D
y
=
0
↔
x
=
y
∧
∀
z
∈
X
x
D
y
≤
z
D
x
+
z
D
y
2
1
simpld
⊢
D
∈
Met
⁡
X
→
D
:
X
×
X
⟶
ℝ