Metamath Proof Explorer


Theorem metgt0

Description: The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of Gleason p. 223 and its converse. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion metgt0 D Met X A X B X A B 0 < A D B

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xmetgt0 D ∞Met X A X B X A B 0 < A D B
3 1 2 syl3an1 D Met X A X B X A B 0 < A D B