| Step |
Hyp |
Ref |
Expression |
| 1 |
|
methaus.1 |
|
| 2 |
1
|
mopnex |
|
| 3 |
|
metxmet |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
simplrl |
|
| 6 |
|
metcl |
|
| 7 |
6
|
3expb |
|
| 8 |
7
|
adantr |
|
| 9 |
|
metgt0 |
|
| 10 |
9
|
3expb |
|
| 11 |
10
|
biimpa |
|
| 12 |
8 11
|
elrpd |
|
| 13 |
12
|
rphalfcld |
|
| 14 |
13
|
rpxrd |
|
| 15 |
|
eqid |
|
| 16 |
15
|
blopn |
|
| 17 |
4 5 14 16
|
syl3anc |
|
| 18 |
|
simplrr |
|
| 19 |
15
|
blopn |
|
| 20 |
4 18 14 19
|
syl3anc |
|
| 21 |
|
blcntr |
|
| 22 |
4 5 13 21
|
syl3anc |
|
| 23 |
|
blcntr |
|
| 24 |
4 18 13 23
|
syl3anc |
|
| 25 |
13
|
rpred |
|
| 26 |
25 25
|
rexaddd |
|
| 27 |
8
|
recnd |
|
| 28 |
27
|
2halvesd |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
8
|
leidd |
|
| 31 |
29 30
|
eqbrtrd |
|
| 32 |
|
bldisj |
|
| 33 |
4 5 18 14 14 31 32
|
syl33anc |
|
| 34 |
|
eleq2 |
|
| 35 |
|
ineq1 |
|
| 36 |
35
|
eqeq1d |
|
| 37 |
34 36
|
3anbi13d |
|
| 38 |
|
eleq2 |
|
| 39 |
|
ineq2 |
|
| 40 |
39
|
eqeq1d |
|
| 41 |
38 40
|
3anbi23d |
|
| 42 |
37 41
|
rspc2ev |
|
| 43 |
17 20 22 24 33 42
|
syl113anc |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
ralrimivva |
|
| 46 |
15
|
mopntopon |
|
| 47 |
|
ishaus2 |
|
| 48 |
3 46 47
|
3syl |
|
| 49 |
45 48
|
mpbird |
|
| 50 |
|
eleq1 |
|
| 51 |
49 50
|
syl5ibrcom |
|
| 52 |
51
|
rexlimiv |
|
| 53 |
2 52
|
syl |
|