Step |
Hyp |
Ref |
Expression |
1 |
|
methaus.1 |
|
2 |
1
|
mopnex |
|
3 |
|
metxmet |
|
4 |
3
|
ad2antrr |
|
5 |
|
simplrl |
|
6 |
|
metcl |
|
7 |
6
|
3expb |
|
8 |
7
|
adantr |
|
9 |
|
metgt0 |
|
10 |
9
|
3expb |
|
11 |
10
|
biimpa |
|
12 |
8 11
|
elrpd |
|
13 |
12
|
rphalfcld |
|
14 |
13
|
rpxrd |
|
15 |
|
eqid |
|
16 |
15
|
blopn |
|
17 |
4 5 14 16
|
syl3anc |
|
18 |
|
simplrr |
|
19 |
15
|
blopn |
|
20 |
4 18 14 19
|
syl3anc |
|
21 |
|
blcntr |
|
22 |
4 5 13 21
|
syl3anc |
|
23 |
|
blcntr |
|
24 |
4 18 13 23
|
syl3anc |
|
25 |
13
|
rpred |
|
26 |
25 25
|
rexaddd |
|
27 |
8
|
recnd |
|
28 |
27
|
2halvesd |
|
29 |
26 28
|
eqtrd |
|
30 |
8
|
leidd |
|
31 |
29 30
|
eqbrtrd |
|
32 |
|
bldisj |
|
33 |
4 5 18 14 14 31 32
|
syl33anc |
|
34 |
|
eleq2 |
|
35 |
|
ineq1 |
|
36 |
35
|
eqeq1d |
|
37 |
34 36
|
3anbi13d |
|
38 |
|
eleq2 |
|
39 |
|
ineq2 |
|
40 |
39
|
eqeq1d |
|
41 |
38 40
|
3anbi23d |
|
42 |
37 41
|
rspc2ev |
|
43 |
17 20 22 24 33 42
|
syl113anc |
|
44 |
43
|
ex |
|
45 |
44
|
ralrimivva |
|
46 |
15
|
mopntopon |
|
47 |
|
ishaus2 |
|
48 |
3 46 47
|
3syl |
|
49 |
45 48
|
mpbird |
|
50 |
|
eleq1 |
|
51 |
49 50
|
syl5ibrcom |
|
52 |
51
|
rexlimiv |
|
53 |
2 52
|
syl |
|