Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
|
2 |
|
metdscn.j |
|
3 |
|
metnrmlem.1 |
|
4 |
|
metnrmlem.2 |
|
5 |
|
metnrmlem.3 |
|
6 |
|
metnrmlem.4 |
|
7 |
6
|
adantr |
|
8 |
|
inelcm |
|
9 |
8
|
expcom |
|
10 |
9
|
adantl |
|
11 |
10
|
necon2bd |
|
12 |
7 11
|
mpd |
|
13 |
|
eqcom |
|
14 |
3
|
adantr |
|
15 |
4
|
adantr |
|
16 |
|
eqid |
|
17 |
16
|
cldss |
|
18 |
15 17
|
syl |
|
19 |
2
|
mopnuni |
|
20 |
14 19
|
syl |
|
21 |
18 20
|
sseqtrrd |
|
22 |
5
|
adantr |
|
23 |
16
|
cldss |
|
24 |
22 23
|
syl |
|
25 |
24 20
|
sseqtrrd |
|
26 |
|
simpr |
|
27 |
25 26
|
sseldd |
|
28 |
1 2
|
metdseq0 |
|
29 |
14 21 27 28
|
syl3anc |
|
30 |
13 29
|
syl5bb |
|
31 |
|
cldcls |
|
32 |
15 31
|
syl |
|
33 |
32
|
eleq2d |
|
34 |
30 33
|
bitrd |
|
35 |
12 34
|
mtbird |
|
36 |
1
|
metdsf |
|
37 |
14 21 36
|
syl2anc |
|
38 |
37 27
|
ffvelrnd |
|
39 |
|
elxrge0 |
|
40 |
39
|
simprbi |
|
41 |
38 40
|
syl |
|
42 |
|
0xr |
|
43 |
|
eliccxr |
|
44 |
38 43
|
syl |
|
45 |
|
xrleloe |
|
46 |
42 44 45
|
sylancr |
|
47 |
41 46
|
mpbid |
|
48 |
47
|
ord |
|
49 |
35 48
|
mt3d |
|
50 |
|
1xr |
|
51 |
|
ifcl |
|
52 |
50 44 51
|
sylancr |
|
53 |
|
1red |
|
54 |
|
0lt1 |
|
55 |
|
breq2 |
|
56 |
|
breq2 |
|
57 |
55 56
|
ifboth |
|
58 |
54 49 57
|
sylancr |
|
59 |
|
xrltle |
|
60 |
42 52 59
|
sylancr |
|
61 |
58 60
|
mpd |
|
62 |
|
xrmin1 |
|
63 |
50 44 62
|
sylancr |
|
64 |
|
xrrege0 |
|
65 |
52 53 61 63 64
|
syl22anc |
|
66 |
65 58
|
elrpd |
|
67 |
49 66
|
jca |
|