| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
|
| 2 |
|
metdscn.j |
|
| 3 |
|
metnrmlem.1 |
|
| 4 |
|
metnrmlem.2 |
|
| 5 |
|
metnrmlem.3 |
|
| 6 |
|
metnrmlem.4 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
inelcm |
|
| 9 |
8
|
expcom |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
necon2bd |
|
| 12 |
7 11
|
mpd |
|
| 13 |
|
eqcom |
|
| 14 |
3
|
adantr |
|
| 15 |
4
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
16
|
cldss |
|
| 18 |
15 17
|
syl |
|
| 19 |
2
|
mopnuni |
|
| 20 |
14 19
|
syl |
|
| 21 |
18 20
|
sseqtrrd |
|
| 22 |
5
|
adantr |
|
| 23 |
16
|
cldss |
|
| 24 |
22 23
|
syl |
|
| 25 |
24 20
|
sseqtrrd |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
1 2
|
metdseq0 |
|
| 29 |
14 21 27 28
|
syl3anc |
|
| 30 |
13 29
|
bitrid |
|
| 31 |
|
cldcls |
|
| 32 |
15 31
|
syl |
|
| 33 |
32
|
eleq2d |
|
| 34 |
30 33
|
bitrd |
|
| 35 |
12 34
|
mtbird |
|
| 36 |
1
|
metdsf |
|
| 37 |
14 21 36
|
syl2anc |
|
| 38 |
37 27
|
ffvelcdmd |
|
| 39 |
|
elxrge0 |
|
| 40 |
39
|
simprbi |
|
| 41 |
38 40
|
syl |
|
| 42 |
|
0xr |
|
| 43 |
|
eliccxr |
|
| 44 |
38 43
|
syl |
|
| 45 |
|
xrleloe |
|
| 46 |
42 44 45
|
sylancr |
|
| 47 |
41 46
|
mpbid |
|
| 48 |
47
|
ord |
|
| 49 |
35 48
|
mt3d |
|
| 50 |
|
1xr |
|
| 51 |
|
ifcl |
|
| 52 |
50 44 51
|
sylancr |
|
| 53 |
|
1red |
|
| 54 |
|
0lt1 |
|
| 55 |
|
breq2 |
|
| 56 |
|
breq2 |
|
| 57 |
55 56
|
ifboth |
|
| 58 |
54 49 57
|
sylancr |
|
| 59 |
|
xrltle |
|
| 60 |
42 52 59
|
sylancr |
|
| 61 |
58 60
|
mpd |
|
| 62 |
|
xrmin1 |
|
| 63 |
50 44 62
|
sylancr |
|
| 64 |
|
xrrege0 |
|
| 65 |
52 53 61 63 64
|
syl22anc |
|
| 66 |
65 58
|
elrpd |
|
| 67 |
49 66
|
jca |
|