Metamath Proof Explorer


Theorem metnrmlem2

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f F = x X sup ran y S x D y * <
metdscn.j J = MetOpen D
metnrmlem.1 φ D ∞Met X
metnrmlem.2 φ S Clsd J
metnrmlem.3 φ T Clsd J
metnrmlem.4 φ S T =
metnrmlem.u U = t T t ball D if 1 F t 1 F t 2
Assertion metnrmlem2 φ U J T U

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 metdscn.j J = MetOpen D
3 metnrmlem.1 φ D ∞Met X
4 metnrmlem.2 φ S Clsd J
5 metnrmlem.3 φ T Clsd J
6 metnrmlem.4 φ S T =
7 metnrmlem.u U = t T t ball D if 1 F t 1 F t 2
8 2 mopntop D ∞Met X J Top
9 3 8 syl φ J Top
10 3 adantr φ t T D ∞Met X
11 eqid J = J
12 11 cldss T Clsd J T J
13 5 12 syl φ T J
14 2 mopnuni D ∞Met X X = J
15 3 14 syl φ X = J
16 13 15 sseqtrrd φ T X
17 16 sselda φ t T t X
18 1 2 3 4 5 6 metnrmlem1a φ t T 0 < F t if 1 F t 1 F t +
19 18 simprd φ t T if 1 F t 1 F t +
20 19 rphalfcld φ t T if 1 F t 1 F t 2 +
21 20 rpxrd φ t T if 1 F t 1 F t 2 *
22 2 blopn D ∞Met X t X if 1 F t 1 F t 2 * t ball D if 1 F t 1 F t 2 J
23 10 17 21 22 syl3anc φ t T t ball D if 1 F t 1 F t 2 J
24 23 ralrimiva φ t T t ball D if 1 F t 1 F t 2 J
25 iunopn J Top t T t ball D if 1 F t 1 F t 2 J t T t ball D if 1 F t 1 F t 2 J
26 9 24 25 syl2anc φ t T t ball D if 1 F t 1 F t 2 J
27 7 26 eqeltrid φ U J
28 blcntr D ∞Met X t X if 1 F t 1 F t 2 + t t ball D if 1 F t 1 F t 2
29 10 17 20 28 syl3anc φ t T t t ball D if 1 F t 1 F t 2
30 29 snssd φ t T t t ball D if 1 F t 1 F t 2
31 30 ralrimiva φ t T t t ball D if 1 F t 1 F t 2
32 ss2iun t T t t ball D if 1 F t 1 F t 2 t T t t T t ball D if 1 F t 1 F t 2
33 31 32 syl φ t T t t T t ball D if 1 F t 1 F t 2
34 iunid t T t = T
35 34 eqcomi T = t T t
36 33 35 7 3sstr4g φ T U
37 27 36 jca φ U J T U