Metamath Proof Explorer


Theorem metreg

Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis metnrm.j J = MetOpen D
Assertion metreg D ∞Met X J Reg

Proof

Step Hyp Ref Expression
1 metnrm.j J = MetOpen D
2 1 metnrm D ∞Met X J Nrm
3 1 methaus D ∞Met X J Haus
4 haust1 J Haus J Fre
5 3 4 syl D ∞Met X J Fre
6 nrmreg J Nrm J Fre J Reg
7 2 5 6 syl2anc D ∞Met X J Reg