Metamath Proof Explorer


Theorem metres

Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metres D Met X D R × R Met X R

Proof

Step Hyp Ref Expression
1 metf D Met X D : X × X
2 fdm D : X × X dom D = X × X
3 metreslem dom D = X × X D R × R = D X R × X R
4 1 2 3 3syl D Met X D R × R = D X R × X R
5 inss1 X R X
6 metres2 D Met X X R X D X R × X R Met X R
7 5 6 mpan2 D Met X D X R × X R Met X R
8 4 7 eqeltrd D Met X D R × R Met X R