Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
metreslem
Next ⟩
metres2
Metamath Proof Explorer
Ascii
Unicode
Theorem
metreslem
Description:
Lemma for
metres
.
(Contributed by
Mario Carneiro
, 24-Aug-2015)
Ref
Expression
Assertion
metreslem
⊢
dom
⁡
D
=
X
×
X
→
D
↾
R
×
R
=
D
↾
X
∩
R
×
X
∩
R
Proof
Step
Hyp
Ref
Expression
1
resdmres
⊢
D
↾
dom
⁡
D
↾
R
×
R
=
D
↾
R
×
R
2
ineq2
⊢
dom
⁡
D
=
X
×
X
→
R
×
R
∩
dom
⁡
D
=
R
×
R
∩
X
×
X
3
dmres
⊢
dom
⁡
D
↾
R
×
R
=
R
×
R
∩
dom
⁡
D
4
inxp
⊢
X
×
X
∩
R
×
R
=
X
∩
R
×
X
∩
R
5
incom
⊢
X
×
X
∩
R
×
R
=
R
×
R
∩
X
×
X
6
4
5
eqtr3i
⊢
X
∩
R
×
X
∩
R
=
R
×
R
∩
X
×
X
7
2
3
6
3eqtr4g
⊢
dom
⁡
D
=
X
×
X
→
dom
⁡
D
↾
R
×
R
=
X
∩
R
×
X
∩
R
8
7
reseq2d
⊢
dom
⁡
D
=
X
×
X
→
D
↾
dom
⁡
D
↾
R
×
R
=
D
↾
X
∩
R
×
X
∩
R
9
1
8
eqtr3id
⊢
dom
⁡
D
=
X
×
X
→
D
↾
R
×
R
=
D
↾
X
∩
R
×
X
∩
R