Metamath Proof Explorer


Theorem metrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014)

Ref Expression
Assertion metrtri D Met X A X B X C X A D C B D C A D B

Proof

Step Hyp Ref Expression
1 metcl D Met X A X C X A D C
2 1 3adant3r2 D Met X A X B X C X A D C
3 metcl D Met X B X C X B D C
4 3 3adant3r1 D Met X A X B X C X B D C
5 eqid dist 𝑠 * = dist 𝑠 *
6 5 xrsdsreval A D C B D C A D C dist 𝑠 * B D C = A D C B D C
7 2 4 6 syl2anc D Met X A X B X C X A D C dist 𝑠 * B D C = A D C B D C
8 metxmet D Met X D ∞Met X
9 5 xmetrtri2 D ∞Met X A X B X C X A D C dist 𝑠 * B D C A D B
10 8 9 sylan D Met X A X B X C X A D C dist 𝑠 * B D C A D B
11 7 10 eqbrtrrd D Met X A X B X C X A D C B D C A D B