Metamath Proof Explorer


Theorem metss

Description: Two ways of saying that metric D generates a finer topology than metric C . (Contributed by Mario Carneiro, 12-Nov-2013) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses metequiv.3 J = MetOpen C
metequiv.4 K = MetOpen D
Assertion metss C ∞Met X D ∞Met X J K x X r + s + x ball D s x ball C r

Proof

Step Hyp Ref Expression
1 metequiv.3 J = MetOpen C
2 metequiv.4 K = MetOpen D
3 1 mopnval C ∞Met X J = topGen ran ball C
4 3 adantr C ∞Met X D ∞Met X J = topGen ran ball C
5 2 mopnval D ∞Met X K = topGen ran ball D
6 5 adantl C ∞Met X D ∞Met X K = topGen ran ball D
7 4 6 sseq12d C ∞Met X D ∞Met X J K topGen ran ball C topGen ran ball D
8 blbas C ∞Met X ran ball C TopBases
9 unirnbl C ∞Met X ran ball C = X
10 9 adantr C ∞Met X D ∞Met X ran ball C = X
11 unirnbl D ∞Met X ran ball D = X
12 11 adantl C ∞Met X D ∞Met X ran ball D = X
13 10 12 eqtr4d C ∞Met X D ∞Met X ran ball C = ran ball D
14 tgss2 ran ball C TopBases ran ball C = ran ball D topGen ran ball C topGen ran ball D x ran ball C y ran ball C x y z ran ball D x z z y
15 8 13 14 syl2an2r C ∞Met X D ∞Met X topGen ran ball C topGen ran ball D x ran ball C y ran ball C x y z ran ball D x z z y
16 10 raleqdv C ∞Met X D ∞Met X x ran ball C y ran ball C x y z ran ball D x z z y x X y ran ball C x y z ran ball D x z z y
17 blssex D ∞Met X x X z ran ball D x z z y s + x ball D s y
18 17 adantll C ∞Met X D ∞Met X x X z ran ball D x z z y s + x ball D s y
19 18 imbi2d C ∞Met X D ∞Met X x X x y z ran ball D x z z y x y s + x ball D s y
20 19 ralbidv C ∞Met X D ∞Met X x X y ran ball C x y z ran ball D x z z y y ran ball C x y s + x ball D s y
21 rpxr r + r *
22 blelrn C ∞Met X x X r * x ball C r ran ball C
23 21 22 syl3an3 C ∞Met X x X r + x ball C r ran ball C
24 blcntr C ∞Met X x X r + x x ball C r
25 eleq2 y = x ball C r x y x x ball C r
26 sseq2 y = x ball C r x ball D s y x ball D s x ball C r
27 26 rexbidv y = x ball C r s + x ball D s y s + x ball D s x ball C r
28 25 27 imbi12d y = x ball C r x y s + x ball D s y x x ball C r s + x ball D s x ball C r
29 28 rspcv x ball C r ran ball C y ran ball C x y s + x ball D s y x x ball C r s + x ball D s x ball C r
30 29 com23 x ball C r ran ball C x x ball C r y ran ball C x y s + x ball D s y s + x ball D s x ball C r
31 23 24 30 sylc C ∞Met X x X r + y ran ball C x y s + x ball D s y s + x ball D s x ball C r
32 31 ad4ant134 C ∞Met X D ∞Met X x X r + y ran ball C x y s + x ball D s y s + x ball D s x ball C r
33 32 ralrimdva C ∞Met X D ∞Met X x X y ran ball C x y s + x ball D s y r + s + x ball D s x ball C r
34 blss C ∞Met X y ran ball C x y r + x ball C r y
35 34 3expb C ∞Met X y ran ball C x y r + x ball C r y
36 35 ad4ant14 C ∞Met X D ∞Met X x X y ran ball C x y r + x ball C r y
37 r19.29 r + s + x ball D s x ball C r r + x ball C r y r + s + x ball D s x ball C r x ball C r y
38 sstr x ball D s x ball C r x ball C r y x ball D s y
39 38 expcom x ball C r y x ball D s x ball C r x ball D s y
40 39 reximdv x ball C r y s + x ball D s x ball C r s + x ball D s y
41 40 impcom s + x ball D s x ball C r x ball C r y s + x ball D s y
42 41 rexlimivw r + s + x ball D s x ball C r x ball C r y s + x ball D s y
43 37 42 syl r + s + x ball D s x ball C r r + x ball C r y s + x ball D s y
44 43 ex r + s + x ball D s x ball C r r + x ball C r y s + x ball D s y
45 36 44 syl5com C ∞Met X D ∞Met X x X y ran ball C x y r + s + x ball D s x ball C r s + x ball D s y
46 45 expr C ∞Met X D ∞Met X x X y ran ball C x y r + s + x ball D s x ball C r s + x ball D s y
47 46 com23 C ∞Met X D ∞Met X x X y ran ball C r + s + x ball D s x ball C r x y s + x ball D s y
48 47 ralrimdva C ∞Met X D ∞Met X x X r + s + x ball D s x ball C r y ran ball C x y s + x ball D s y
49 33 48 impbid C ∞Met X D ∞Met X x X y ran ball C x y s + x ball D s y r + s + x ball D s x ball C r
50 20 49 bitrd C ∞Met X D ∞Met X x X y ran ball C x y z ran ball D x z z y r + s + x ball D s x ball C r
51 50 ralbidva C ∞Met X D ∞Met X x X y ran ball C x y z ran ball D x z z y x X r + s + x ball D s x ball C r
52 16 51 bitrd C ∞Met X D ∞Met X x ran ball C y ran ball C x y z ran ball D x z z y x X r + s + x ball D s x ball C r
53 7 15 52 3bitrd C ∞Met X D ∞Met X J K x X r + s + x ball D s x ball C r