Step |
Hyp |
Ref |
Expression |
1 |
|
metequiv.3 |
|
2 |
|
metequiv.4 |
|
3 |
1
|
mopnval |
|
4 |
3
|
adantr |
|
5 |
2
|
mopnval |
|
6 |
5
|
adantl |
|
7 |
4 6
|
sseq12d |
|
8 |
|
blbas |
|
9 |
|
unirnbl |
|
10 |
9
|
adantr |
|
11 |
|
unirnbl |
|
12 |
11
|
adantl |
|
13 |
10 12
|
eqtr4d |
|
14 |
|
tgss2 |
|
15 |
8 13 14
|
syl2an2r |
|
16 |
10
|
raleqdv |
|
17 |
|
blssex |
|
18 |
17
|
adantll |
|
19 |
18
|
imbi2d |
|
20 |
19
|
ralbidv |
|
21 |
|
rpxr |
|
22 |
|
blelrn |
|
23 |
21 22
|
syl3an3 |
|
24 |
|
blcntr |
|
25 |
|
eleq2 |
|
26 |
|
sseq2 |
|
27 |
26
|
rexbidv |
|
28 |
25 27
|
imbi12d |
|
29 |
28
|
rspcv |
|
30 |
29
|
com23 |
|
31 |
23 24 30
|
sylc |
|
32 |
31
|
ad4ant134 |
|
33 |
32
|
ralrimdva |
|
34 |
|
blss |
|
35 |
34
|
3expb |
|
36 |
35
|
ad4ant14 |
|
37 |
|
r19.29 |
|
38 |
|
sstr |
|
39 |
38
|
expcom |
|
40 |
39
|
reximdv |
|
41 |
40
|
impcom |
|
42 |
41
|
rexlimivw |
|
43 |
37 42
|
syl |
|
44 |
43
|
ex |
|
45 |
36 44
|
syl5com |
|
46 |
45
|
expr |
|
47 |
46
|
com23 |
|
48 |
47
|
ralrimdva |
|
49 |
33 48
|
impbid |
|
50 |
20 49
|
bitrd |
|
51 |
50
|
ralbidva |
|
52 |
16 51
|
bitrd |
|
53 |
7 15 52
|
3bitrd |
|