Metamath Proof Explorer


Theorem metss2

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), then D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses metequiv.3 J = MetOpen C
metequiv.4 K = MetOpen D
metss2.1 φ C Met X
metss2.2 φ D Met X
metss2.3 φ R +
metss2.4 φ x X y X x C y R x D y
Assertion metss2 φ J K

Proof

Step Hyp Ref Expression
1 metequiv.3 J = MetOpen C
2 metequiv.4 K = MetOpen D
3 metss2.1 φ C Met X
4 metss2.2 φ D Met X
5 metss2.3 φ R +
6 metss2.4 φ x X y X x C y R x D y
7 simpr x X r + r +
8 rpdivcl r + R + r R +
9 7 5 8 syl2anr φ x X r + r R +
10 1 2 3 4 5 6 metss2lem φ x X r + x ball D r R x ball C r
11 oveq2 s = r R x ball D s = x ball D r R
12 11 sseq1d s = r R x ball D s x ball C r x ball D r R x ball C r
13 12 rspcev r R + x ball D r R x ball C r s + x ball D s x ball C r
14 9 10 13 syl2anc φ x X r + s + x ball D s x ball C r
15 14 ralrimivva φ x X r + s + x ball D s x ball C r
16 metxmet C Met X C ∞Met X
17 3 16 syl φ C ∞Met X
18 metxmet D Met X D ∞Met X
19 4 18 syl φ D ∞Met X
20 1 2 metss C ∞Met X D ∞Met X J K x X r + s + x ball D s x ball C r
21 17 19 20 syl2anc φ J K x X r + s + x ball D s x ball C r
22 15 21 mpbird φ J K