Metamath Proof Explorer


Theorem mettri

Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of Gleason p. 223. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion mettri D Met X A X B X C X A D B A D C + C D B

Proof

Step Hyp Ref Expression
1 mettri2 D Met X C X A X B X A D B C D A + C D B
2 1 expcom C X A X B X D Met X A D B C D A + C D B
3 2 3coml A X B X C X D Met X A D B C D A + C D B
4 3 impcom D Met X A X B X C X A D B C D A + C D B
5 metsym D Met X A X C X A D C = C D A
6 5 3adant3r2 D Met X A X B X C X A D C = C D A
7 6 oveq1d D Met X A X B X C X A D C + C D B = C D A + C D B
8 4 7 breqtrrd D Met X A X B X C X A D B A D C + C D B