Metamath Proof Explorer


Theorem mettri2

Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion mettri2 D Met X C X A X B X A D B C D A + C D B

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xmettri2 D ∞Met X C X A X B X A D B C D A + 𝑒 C D B
3 1 2 sylan D Met X C X A X B X A D B C D A + 𝑒 C D B
4 metcl D Met X C X A X C D A
5 4 3adant3r3 D Met X C X A X B X C D A
6 metcl D Met X C X B X C D B
7 6 3adant3r2 D Met X C X A X B X C D B
8 5 7 rexaddd D Met X C X A X B X C D A + 𝑒 C D B = C D A + C D B
9 3 8 breqtrd D Met X C X A X B X A D B C D A + C D B