Metamath Proof Explorer


Theorem metuel

Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 8-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion metuel X D PsMet X V metUnif D V X × X w ran a + D -1 0 a w V

Proof

Step Hyp Ref Expression
1 metuval D PsMet X metUnif D = X × X filGen ran a + D -1 0 a
2 1 adantl X D PsMet X metUnif D = X × X filGen ran a + D -1 0 a
3 2 eleq2d X D PsMet X V metUnif D V X × X filGen ran a + D -1 0 a
4 oveq2 a = e 0 a = 0 e
5 4 imaeq2d a = e D -1 0 a = D -1 0 e
6 5 cbvmptv a + D -1 0 a = e + D -1 0 e
7 6 rneqi ran a + D -1 0 a = ran e + D -1 0 e
8 7 metustfbas X D PsMet X ran a + D -1 0 a fBas X × X
9 elfg ran a + D -1 0 a fBas X × X V X × X filGen ran a + D -1 0 a V X × X w ran a + D -1 0 a w V
10 8 9 syl X D PsMet X V X × X filGen ran a + D -1 0 a V X × X w ran a + D -1 0 a w V
11 3 10 bitrd X D PsMet X V metUnif D V X × X w ran a + D -1 0 a w V