Metamath Proof Explorer


Theorem metust

Description: The uniform structure generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metust X D PsMet X X × X filGen F UnifOn X

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 1 metustfbas X D PsMet X F fBas X × X
3 fgcl F fBas X × X X × X filGen F Fil X × X
4 filsspw X × X filGen F Fil X × X X × X filGen F 𝒫 X × X
5 2 3 4 3syl X D PsMet X X × X filGen F 𝒫 X × X
6 filtop X × X filGen F Fil X × X X × X X × X filGen F
7 2 3 6 3syl X D PsMet X X × X X × X filGen F
8 2 3 syl X D PsMet X X × X filGen F Fil X × X
9 8 ad3antrrr X D PsMet X v X × X filGen F w 𝒫 X × X v w X × X filGen F Fil X × X
10 simpllr X D PsMet X v X × X filGen F w 𝒫 X × X v w v X × X filGen F
11 simplr X D PsMet X v X × X filGen F w 𝒫 X × X v w w 𝒫 X × X
12 11 elpwid X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X
13 simpr X D PsMet X v X × X filGen F w 𝒫 X × X v w v w
14 filss X × X filGen F Fil X × X v X × X filGen F w X × X v w w X × X filGen F
15 9 10 12 13 14 syl13anc X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X filGen F
16 15 ex X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X filGen F
17 16 ralrimiva X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X filGen F
18 8 ad2antrr X D PsMet X v X × X filGen F w X × X filGen F X × X filGen F Fil X × X
19 simplr X D PsMet X v X × X filGen F w X × X filGen F v X × X filGen F
20 simpr X D PsMet X v X × X filGen F w X × X filGen F w X × X filGen F
21 filin X × X filGen F Fil X × X v X × X filGen F w X × X filGen F v w X × X filGen F
22 18 19 20 21 syl3anc X D PsMet X v X × X filGen F w X × X filGen F v w X × X filGen F
23 22 ralrimiva X D PsMet X v X × X filGen F w X × X filGen F v w X × X filGen F
24 1 metustid D PsMet X u F I X u
25 24 ad5ant24 X D PsMet X v X × X filGen F u F u v I X u
26 simpr X D PsMet X v X × X filGen F u F u v u v
27 25 26 sstrd X D PsMet X v X × X filGen F u F u v I X v
28 elfg F fBas X × X v X × X filGen F v X × X u F u v
29 28 biimpa F fBas X × X v X × X filGen F v X × X u F u v
30 29 simprd F fBas X × X v X × X filGen F u F u v
31 2 30 sylan X D PsMet X v X × X filGen F u F u v
32 27 31 r19.29a X D PsMet X v X × X filGen F I X v
33 8 ad3antrrr X D PsMet X v X × X filGen F u F u v X × X filGen F Fil X × X
34 2 adantr X D PsMet X v X × X filGen F F fBas X × X
35 ssfg F fBas X × X F X × X filGen F
36 34 35 syl X D PsMet X v X × X filGen F F X × X filGen F
37 36 ad2antrr X D PsMet X v X × X filGen F u F u v F X × X filGen F
38 simplr X D PsMet X v X × X filGen F u F u v u F
39 37 38 sseldd X D PsMet X v X × X filGen F u F u v u X × X filGen F
40 29 simpld F fBas X × X v X × X filGen F v X × X
41 2 40 sylan X D PsMet X v X × X filGen F v X × X
42 41 ad2antrr X D PsMet X v X × X filGen F u F u v v X × X
43 cnvss v X × X v -1 X × X -1
44 cnvxp X × X -1 = X × X
45 43 44 sseqtrdi v X × X v -1 X × X
46 42 45 syl X D PsMet X v X × X filGen F u F u v v -1 X × X
47 1 metustsym D PsMet X u F u -1 = u
48 47 ad5ant24 X D PsMet X v X × X filGen F u F u v u -1 = u
49 cnvss u v u -1 v -1
50 49 adantl X D PsMet X v X × X filGen F u F u v u -1 v -1
51 48 50 eqsstrrd X D PsMet X v X × X filGen F u F u v u v -1
52 filss X × X filGen F Fil X × X u X × X filGen F v -1 X × X u v -1 v -1 X × X filGen F
53 33 39 46 51 52 syl13anc X D PsMet X v X × X filGen F u F u v v -1 X × X filGen F
54 53 31 r19.29a X D PsMet X v X × X filGen F v -1 X × X filGen F
55 1 metustexhalf X D PsMet X u F w F w w u
56 55 ad4ant13 X D PsMet X v X × X filGen F u F u v w F w w u
57 r19.41v w F w w u u v w F w w u u v
58 sstr w w u u v w w v
59 58 reximi w F w w u u v w F w w v
60 57 59 sylbir w F w w u u v w F w w v
61 56 60 sylancom X D PsMet X v X × X filGen F u F u v w F w w v
62 61 31 r19.29a X D PsMet X v X × X filGen F w F w w v
63 ssrexv F X × X filGen F w F w w v w X × X filGen F w w v
64 36 62 63 sylc X D PsMet X v X × X filGen F w X × X filGen F w w v
65 32 54 64 3jca X D PsMet X v X × X filGen F I X v v -1 X × X filGen F w X × X filGen F w w v
66 17 23 65 3jca X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X filGen F w X × X filGen F v w X × X filGen F I X v v -1 X × X filGen F w X × X filGen F w w v
67 66 ralrimiva X D PsMet X v X × X filGen F w 𝒫 X × X v w w X × X filGen F w X × X filGen F v w X × X filGen F I X v v -1 X × X filGen F w X × X filGen F w w v
68 elfvex D PsMet X X V
69 68 adantl X D PsMet X X V
70 isust X V X × X filGen F UnifOn X X × X filGen F 𝒫 X × X X × X X × X filGen F v X × X filGen F w 𝒫 X × X v w w X × X filGen F w X × X filGen F v w X × X filGen F I X v v -1 X × X filGen F w X × X filGen F w w v
71 69 70 syl X D PsMet X X × X filGen F UnifOn X X × X filGen F 𝒫 X × X X × X X × X filGen F v X × X filGen F w 𝒫 X × X v w w X × X filGen F w X × X filGen F v w X × X filGen F I X v v -1 X × X filGen F w X × X filGen F w w v
72 5 7 67 71 mpbir3and X D PsMet X X × X filGen F UnifOn X