Metamath Proof Explorer


Theorem metustel

Description: Define a filter base F generated by a metric D . (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metustel D PsMet X B F a + B = D -1 0 a

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 1 eleq2i B F B ran a + D -1 0 a
3 elex B ran a + D -1 0 a B V
4 3 a1i D PsMet X B ran a + D -1 0 a B V
5 cnvexg D PsMet X D -1 V
6 imaexg D -1 V D -1 0 a V
7 eleq1a D -1 0 a V B = D -1 0 a B V
8 5 6 7 3syl D PsMet X B = D -1 0 a B V
9 8 rexlimdvw D PsMet X a + B = D -1 0 a B V
10 eqid a + D -1 0 a = a + D -1 0 a
11 10 elrnmpt B V B ran a + D -1 0 a a + B = D -1 0 a
12 11 a1i D PsMet X B V B ran a + D -1 0 a a + B = D -1 0 a
13 4 9 12 pm5.21ndd D PsMet X B ran a + D -1 0 a a + B = D -1 0 a
14 2 13 syl5bb D PsMet X B F a + B = D -1 0 a