Metamath Proof Explorer


Theorem metustfbas

Description: The filter base generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metustfbas X D PsMet X F fBas X × X

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 1 metustel D PsMet X x F a + x = D -1 0 a
3 simpr D PsMet X x = D -1 0 a x = D -1 0 a
4 cnvimass D -1 0 a dom D
5 psmetf D PsMet X D : X × X *
6 5 fdmd D PsMet X dom D = X × X
7 6 adantr D PsMet X x = D -1 0 a dom D = X × X
8 4 7 sseqtrid D PsMet X x = D -1 0 a D -1 0 a X × X
9 3 8 eqsstrd D PsMet X x = D -1 0 a x X × X
10 9 ex D PsMet X x = D -1 0 a x X × X
11 10 rexlimdvw D PsMet X a + x = D -1 0 a x X × X
12 2 11 sylbid D PsMet X x F x X × X
13 12 ralrimiv D PsMet X x F x X × X
14 pwssb F 𝒫 X × X x F x X × X
15 13 14 sylibr D PsMet X F 𝒫 X × X
16 15 adantl X D PsMet X F 𝒫 X × X
17 cnvexg D PsMet X D -1 V
18 imaexg D -1 V D -1 0 1 V
19 elisset D -1 0 1 V x x = D -1 0 1
20 1rp 1 +
21 oveq2 a = 1 0 a = 0 1
22 21 imaeq2d a = 1 D -1 0 a = D -1 0 1
23 22 rspceeqv 1 + x = D -1 0 1 a + x = D -1 0 a
24 20 23 mpan x = D -1 0 1 a + x = D -1 0 a
25 24 eximi x x = D -1 0 1 x a + x = D -1 0 a
26 17 18 19 25 4syl D PsMet X x a + x = D -1 0 a
27 2 exbidv D PsMet X x x F x a + x = D -1 0 a
28 26 27 mpbird D PsMet X x x F
29 28 adantl X D PsMet X x x F
30 n0 F x x F
31 29 30 sylibr X D PsMet X F
32 1 metustid D PsMet X x F I X x
33 32 adantll X D PsMet X x F I X x
34 n0 X p p X
35 34 biimpi X p p X
36 35 adantr X D PsMet X p p X
37 opelidres p X p p I X p X
38 37 ibir p X p p I X
39 38 ne0d p X I X
40 39 exlimiv p p X I X
41 36 40 syl X D PsMet X I X
42 41 adantr X D PsMet X x F I X
43 ssn0 I X x I X x
44 33 42 43 syl2anc X D PsMet X x F x
45 44 nelrdva X D PsMet X ¬ F
46 df-nel F ¬ F
47 45 46 sylibr X D PsMet X F
48 df-ss x y x y = x
49 48 biimpi x y x y = x
50 49 adantl X D PsMet X x F y F x y x y = x
51 simplrl X D PsMet X x F y F x y x F
52 50 51 eqeltrd X D PsMet X x F y F x y x y F
53 sseqin2 y x x y = y
54 53 biimpi y x x y = y
55 54 adantl X D PsMet X x F y F y x x y = y
56 simplrr X D PsMet X x F y F y x y F
57 55 56 eqeltrd X D PsMet X x F y F y x x y F
58 simplr X D PsMet X x F y F D PsMet X
59 simprl X D PsMet X x F y F x F
60 simprr X D PsMet X x F y F y F
61 1 metustto D PsMet X x F y F x y y x
62 58 59 60 61 syl3anc X D PsMet X x F y F x y y x
63 52 57 62 mpjaodan X D PsMet X x F y F x y F
64 ssidd X D PsMet X x F y F x y x y
65 sseq1 z = x y z x y x y x y
66 65 rspcev x y F x y x y z F z x y
67 63 64 66 syl2anc X D PsMet X x F y F z F z x y
68 67 ralrimivva X D PsMet X x F y F z F z x y
69 31 47 68 3jca X D PsMet X F F x F y F z F z x y
70 elfvex D PsMet X X V
71 70 adantl X D PsMet X X V
72 71 71 xpexd X D PsMet X X × X V
73 isfbas2 X × X V F fBas X × X F 𝒫 X × X F F x F y F z F z x y
74 72 73 syl X D PsMet X F fBas X × X F 𝒫 X × X F F x F y F z F z x y
75 16 69 74 mpbir2and X D PsMet X F fBas X × X