Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
|
2 |
1
|
metustel |
|
3 |
|
simpr |
|
4 |
|
cnvimass |
|
5 |
|
psmetf |
|
6 |
5
|
fdmd |
|
7 |
6
|
adantr |
|
8 |
4 7
|
sseqtrid |
|
9 |
3 8
|
eqsstrd |
|
10 |
9
|
ex |
|
11 |
10
|
rexlimdvw |
|
12 |
2 11
|
sylbid |
|
13 |
12
|
ralrimiv |
|
14 |
|
pwssb |
|
15 |
13 14
|
sylibr |
|
16 |
15
|
adantl |
|
17 |
|
cnvexg |
|
18 |
|
imaexg |
|
19 |
|
elisset |
|
20 |
|
1rp |
|
21 |
|
oveq2 |
|
22 |
21
|
imaeq2d |
|
23 |
22
|
rspceeqv |
|
24 |
20 23
|
mpan |
|
25 |
24
|
eximi |
|
26 |
17 18 19 25
|
4syl |
|
27 |
2
|
exbidv |
|
28 |
26 27
|
mpbird |
|
29 |
28
|
adantl |
|
30 |
|
n0 |
|
31 |
29 30
|
sylibr |
|
32 |
1
|
metustid |
|
33 |
32
|
adantll |
|
34 |
|
n0 |
|
35 |
34
|
biimpi |
|
36 |
35
|
adantr |
|
37 |
|
opelidres |
|
38 |
37
|
ibir |
|
39 |
38
|
ne0d |
|
40 |
39
|
exlimiv |
|
41 |
36 40
|
syl |
|
42 |
41
|
adantr |
|
43 |
|
ssn0 |
|
44 |
33 42 43
|
syl2anc |
|
45 |
44
|
nelrdva |
|
46 |
|
df-nel |
|
47 |
45 46
|
sylibr |
|
48 |
|
df-ss |
|
49 |
48
|
biimpi |
|
50 |
49
|
adantl |
|
51 |
|
simplrl |
|
52 |
50 51
|
eqeltrd |
|
53 |
|
sseqin2 |
|
54 |
53
|
biimpi |
|
55 |
54
|
adantl |
|
56 |
|
simplrr |
|
57 |
55 56
|
eqeltrd |
|
58 |
|
simplr |
|
59 |
|
simprl |
|
60 |
|
simprr |
|
61 |
1
|
metustto |
|
62 |
58 59 60 61
|
syl3anc |
|
63 |
52 57 62
|
mpjaodan |
|
64 |
|
ssidd |
|
65 |
|
sseq1 |
|
66 |
65
|
rspcev |
|
67 |
63 64 66
|
syl2anc |
|
68 |
67
|
ralrimivva |
|
69 |
31 47 68
|
3jca |
|
70 |
|
elfvex |
|
71 |
70
|
adantl |
|
72 |
71 71
|
xpexd |
|
73 |
|
isfbas2 |
|
74 |
72 73
|
syl |
|
75 |
16 69 74
|
mpbir2and |
|