Metamath Proof Explorer


Theorem metustss

Description: Range of the elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metustss D PsMet X A F A X × X

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 cnvimass D -1 0 a dom D
3 psmetf D PsMet X D : X × X *
4 2 3 fssdm D PsMet X D -1 0 a X × X
5 4 ad2antrr D PsMet X A F a + D -1 0 a X × X
6 cnvexg D PsMet X D -1 V
7 imaexg D -1 V D -1 0 a V
8 elpwg D -1 0 a V D -1 0 a 𝒫 X × X D -1 0 a X × X
9 6 7 8 3syl D PsMet X D -1 0 a 𝒫 X × X D -1 0 a X × X
10 9 ad2antrr D PsMet X A F a + D -1 0 a 𝒫 X × X D -1 0 a X × X
11 5 10 mpbird D PsMet X A F a + D -1 0 a 𝒫 X × X
12 11 ralrimiva D PsMet X A F a + D -1 0 a 𝒫 X × X
13 eqid a + D -1 0 a = a + D -1 0 a
14 13 rnmptss a + D -1 0 a 𝒫 X × X ran a + D -1 0 a 𝒫 X × X
15 12 14 syl D PsMet X A F ran a + D -1 0 a 𝒫 X × X
16 1 15 eqsstrid D PsMet X A F F 𝒫 X × X
17 simpr D PsMet X A F A F
18 16 17 sseldd D PsMet X A F A 𝒫 X × X
19 18 elpwid D PsMet X A F A X × X